def test_glass_posterior_log_pdf_execute(): if not glass_available: raise SkipTest("Shogun not available") D = 9 theta = np.random.randn(D) target = GlassPosterior() target.set_up() target.log_pdf(theta)
def test_glass_posterior_setup_execute(): if not glass_available: raise SkipTest("Shogun not available") GlassPosterior().set_up()
adaptation_schedule=schedule, acc_star=acc_star) if __name__ == '__main__': """ This example samples from the marginal posterior over hyper-parameters of a Gaussian Process classification model. All samplers in the paper are used. Note this is an illustrative demo and the number of iterations are set very low. """ # Glass posterior has 9 dimensions D = 9 if glass_available: target = GlassPosterior() target.set_up() else: target = IsotropicZeroMeanGaussian(D=D) # transition kernel, pick any samplers = [ get_am_instance(target), get_mh_instance(target), get_kam_instance(target), get_kmc_instance(target) ] for sampler in samplers: # MCMC parameters