def test3(): data = [Entry(id = None, correct = -1, features = np.array([1.0, 1.0])), Entry(id = None, correct = -1, features = np.array([-1.0, 1.0])), Entry(id = None, correct = -1, features = np.array([1.0, -1.0])), Entry(id = None, correct = -1, features = np.array([-1.0, -1.0])), Entry(id = None, correct = 1, features = np.array([5.0, 5.0])), Entry(id = None, correct = 1, features = np.array([-5.0, 5.0])), Entry(id = None, correct = 1, features = np.array([5.0, -5.0])), Entry(id = None, correct = 1, features = np.array([-5.0, -5.0]))] classifier = train_svm(data, 100.0, lambda x, y: kernels.poly2(x, y, 0.0)) test_ans = test_svm(data, classifier) results = calculate_results(data, test_ans) print(results)
def test3(): data = [ Entry(id=None, correct=-1, features=np.array([1.0, 1.0])), Entry(id=None, correct=-1, features=np.array([-1.0, 1.0])), Entry(id=None, correct=-1, features=np.array([1.0, -1.0])), Entry(id=None, correct=-1, features=np.array([-1.0, -1.0])), Entry(id=None, correct=1, features=np.array([5.0, 5.0])), Entry(id=None, correct=1, features=np.array([-5.0, 5.0])), Entry(id=None, correct=1, features=np.array([5.0, -5.0])), Entry(id=None, correct=1, features=np.array([-5.0, -5.0])) ] classifier = train_svm(data, 100.0, lambda x, y: kernels.poly2(x, y, 0.0)) test_ans = test_svm(data, classifier) results = calculate_results(data, test_ans) print(results)
results = calculate_results(test_set, test_ans) err_rate = error_rate(results) prec = precision(results) rec = recall(results) f1 = f1score(results) if verbose: print("C = {}, test set error rate = {}".format(bestC, err_rate)) return (classifier, err_rate, prec, rec, f1) random.seed(6346) # uncomment to make the program deterministic ks = [(kernels.identity, "Identity kernel"), (lambda x, y: kernels.poly2(x, y, 0.0), "Homogeneous polynomial kernel")( lambda x, y: kernels.gaussian(x, y, -0.00001), "Gaussian kernel, gamma = -0.00001")] for phi, desc in ks: cnt = 2 serr = 0.0 sprec = 0.0 srec = 0.0 sf1 = 0.0 print("--------------------------------") print("Running {} iterations using {}".format(cnt, desc)) for i in range(cnt): stderr.write("Running... {}/{}\n".format(i, cnt)) _, err_rate, prec, rec, f1 = run_all(data, phi, verbose=True)
err_rate = error_rate(results) prec = precision(results) rec = recall(results) f1 = f1score(results) if verbose: print("C = {}, test set error rate = {}".format(bestC, err_rate)) return (classifier, err_rate, prec, rec, f1) random.seed(6346) # uncomment to make the program deterministic ks = [ (kernels.identity, "Identity kernel"), (lambda x, y: kernels.poly2(x, y, 0.0), "Homogeneous polynomial kernel")( lambda x, y: kernels.gaussian(x, y, -0.00001), "Gaussian kernel, gamma = -0.00001" ), ] for phi, desc in ks: cnt = 2 serr = 0.0 sprec = 0.0 srec = 0.0 sf1 = 0.0 print("--------------------------------") print("Running {} iterations using {}".format(cnt, desc)) for i in range(cnt): stderr.write("Running... {}/{}\n".format(i, cnt))