def diagnose_me(ctx, json, project_id, namespace): """Runs environment diagnostic with specified parameters. Feature stage: [Alpha](https://github.com/kubeflow/pipelines/blob/07328e5094ac2981d3059314cc848fbb71437a76/docs/release/feature-stages.md#alpha) """ # validate kubectl, gcloud , and gsutil exist local_env_gcloud_sdk = gcp.get_gcp_configuration( gcp.Commands.GET_GCLOUD_VERSION, project_id=project_id, human_readable=False) for app in ['Google Cloud SDK', 'gsutil', 'kubectl']: if app not in local_env_gcloud_sdk.json_output: raise RuntimeError( '%s is not installed, gcloud, gsutil and kubectl are required ' % app + 'for this app to run. Please follow instructions at ' + 'https://cloud.google.com/sdk/install to install the SDK.') click.echo('Collecting diagnostic information ...', file=sys.stderr) # default behaviour dump all configurations results = {} for gcp_command in gcp.Commands: results[gcp_command] = gcp.get_gcp_configuration( gcp_command, project_id=project_id, human_readable=not json) for k8_command in k8.Commands: results[k8_command] = k8.get_kubectl_configuration( k8_command, human_readable=not json) for dev_env_command in dev_env.Commands: results[dev_env_command] = dev_env.get_dev_env_configuration( dev_env_command, human_readable=not json) print_to_sdtout(results, not json)
def diagnose_me(ctx: click.Context, json: bool, project_id: str, namespace: str): """Runs KFP environment diagnostic.""" # validate kubectl, gcloud , and gsutil exist local_env_gcloud_sdk = gcp.get_gcp_configuration( gcp.Commands.GET_GCLOUD_VERSION, project_id=project_id, human_readable=False) for app in ['Google Cloud SDK', 'gsutil', 'kubectl']: if app not in local_env_gcloud_sdk.json_output: raise RuntimeError( f'{app} is not installed, gcloud, gsutil and kubectl are required ' + 'for this app to run. Please follow instructions at ' + 'https://cloud.google.com/sdk/install to install the SDK.') click.echo('Collecting diagnostic information ...', file=sys.stderr) # default behaviour dump all configurations results: ResultsType = { gcp_command: gcp.get_gcp_configuration(gcp_command, project_id=project_id, human_readable=not json) for gcp_command in gcp.Commands } for k8_command in k8.Commands: results[k8_command] = k8.get_kubectl_configuration( k8_command, human_readable=not json) for dev_env_command in dev_env.Commands: results[dev_env_command] = dev_env.get_dev_env_configuration( dev_env_command, human_readable=not json) print_to_sdtout(results, not json)
def run_diagnose_me( bucket: str, execution_mode: str, project_id: str, target_apis: str, quota_check: list = None, ) -> NamedTuple('Outputs', [('bucket', str), ('project_id', str)]): """ Performs environment verification specific to this pipeline. args: bucket: string name of the bucket to be checked. Must be of the format gs://bucket_root/any/path/here/is/ignored where any path beyond root is ignored. execution_mode: If set to HALT_ON_ERROR will case any error to raise an exception. This is intended to stop the data processing of a pipeline. Can set to False to only report Errors/Warnings. project_id: GCP project ID which is assumed to be the project under which current pod is executing. target_apis: String consisting of a comma separated list of apis to be verified. quota_check: List of entries describing how much quota is required. Each entry has three fields: region, metric and quota_needed. All string-typed. Raises: RuntimeError: If configuration is not setup properly and HALT_ON_ERROR flag is set. """ # Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0' # does not come with pip3 pre-installed. import subprocess subprocess.run( ['curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py'], capture_output=True) subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'], capture_output=True) subprocess.run(['python3', 'get-pip.py'], capture_output=True) subprocess.run( ['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'], capture_output=True) import sys from kfp.cli.diagnose_me import gcp config_error_observed = False quota_list = gcp.get_gcp_configuration(gcp.Commands.GET_QUOTAS, human_readable=False) if quota_list.has_error: print('Failed to retrieve project quota with error %s\n' % (quota_list.stderr)) config_error_observed = True else: # Check quota. quota_dict = {} # Mapping from region to dict[metric, available] for region_quota in quota_list.json_output: quota_dict[region_quota['name']] = {} for quota in region_quota['quotas']: quota_dict[region_quota['name']][ quota['metric']] = quota['limit'] - quota['usage'] quota_check = [] or quota_check for single_check in quota_check: if single_check['region'] not in quota_dict: print( 'Regional quota for %s does not exist in current project.\n' % (single_check['region'])) config_error_observed = True else: if quota_dict[single_check['region']][ single_check['metric']] < single_check['quota_needed']: print( 'Insufficient quota observed for %s at %s: %s is needed but only %s is available.\n' % (single_check['metric'], single_check['region'], str(single_check['quota_needed']), str(quota_dict[single_check['region']][ single_check['metric']]))) config_error_observed = True # Get the project ID # from project configuration project_config = gcp.get_gcp_configuration(gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False) if not project_config.has_error: auth_project_id = project_config.parsed_output['core']['project'] print( 'GCP credentials are configured with access to project: %s ...\n' % (project_id)) print('Following account(s) are active under this pipeline:\n') subprocess.run(['gcloud', 'auth', 'list', '--format', 'json']) print('\n') else: print('Project configuration is not accessible with error %s\n' % (project_config.stderr), file=sys.stderr) config_error_observed = True if auth_project_id != project_id: print( 'User provided project ID %s does not match the configuration %s\n' % (project_id, auth_project_id), file=sys.stderr) config_error_observed = True # Get project buckets get_project_bucket_results = gcp.get_gcp_configuration( gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False) if get_project_bucket_results.has_error: print('could not retrieve project buckets with error: %s' % (get_project_bucket_results.stderr), file=sys.stderr) config_error_observed = True # Get the root of the user provided bucket i.e. gs://root. bucket_root = '/'.join(bucket.split('/')[0:3]) print( 'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' % (bucket)) if bucket_root in get_project_bucket_results.json_output: print( 'Provided bucket \n %s\nis accessible within the project\n %s\n' % (bucket, project_id)) else: print( 'Could not find the bucket %s in project %s' % (bucket, project_id) + 'Please verify that you have provided the correct GCS bucket name.\n' + 'Only the following buckets are visible in this project:\n%s' % (get_project_bucket_results.parsed_output), file=sys.stderr) config_error_observed = True # Verify APIs that are required are enabled api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS) api_status = {} if api_config_results.has_error: print('could not retrieve API status with error: %s' % (api_config_results.stderr), file=sys.stderr) config_error_observed = True print('Checking APIs status ...') for item in api_config_results.parsed_output: api_status[item['config']['name']] = item['state'] # printing the results in stdout for logging purposes print('%s %s' % (item['config']['name'], item['state'])) # Check if target apis are enabled api_check_results = True for api in target_apis.replace(' ', '').split(','): if 'ENABLED' != api_status.get(api, 'DISABLED'): api_check_results = False print( 'API \"%s\" is not accessible or not enabled. To enable this api go to ' % (api) + 'https://console.cloud.google.com/apis/library/%s?project=%s' % (api, project_id), file=sys.stderr) config_error_observed = True if 'HALT_ON_ERROR' in execution_mode and config_error_observed: raise RuntimeError( 'There was an error in your environment configuration.\n' + 'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n' + '\n' + 'We highly recommend that you recreate the cluster and check "Allow access ..." \n' + 'checkbox during cluster creation to have the cluster configured automatically.\n' + 'For more information on this and other troubleshooting instructions refer to\n' + 'our troubleshooting guide.\n' + '\n' + 'If you have intentionally modified the cluster configuration, you may\n' + 'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n' ) return (project_id, bucket)
def test_project_configuration_gsutil(self, mock_execute_gsutil_command): """Test Gsutil commands.""" gcp.get_gcp_configuration(gcp.Commands.GET_STORAGE_BUCKETS) mock_execute_gsutil_command.assert_called_once_with(['ls'], project_id=None)
def test_project_configuration_gcloud(self, mock_execute_gcloud_command): """Tests gcloud commands.""" gcp.get_gcp_configuration(gcp.Commands.GET_APIS) mock_execute_gcloud_command.assert_called_once_with( ['services', 'list'], project_id=None, human_readable=False)