示例#1
0
def train(sess,graph,config):
    batch_size=config["batch_size"]
    learning_rate=config["learning_rate"]
    
    if config["validation_dataset"] is None:
        _, train_data,valid_data,info = load_and_split_data(config,filename=config["dataset"],valid_data_rate=config["validation_data_rate"])
    else:
        print("[INFO] training")
        train_data, info = load_data(config, filename=config["dataset"])
        print("[INFO] validation")
        valid_data, valid_info = load_data(config, filename=config["validation_dataset"])
        info["graph_node_num"] = max(info["graph_node_num"], valid_info["graph_node_num"])
        info["graph_num"] = info["graph_num"] + valid_info["graph_num"]

    model = CoreModel(sess,config,info)
    model.build(importlib.import_module(config["model.py"]))
    if config["profile"]:
        vars_to_train = tf.trainable_variables()
        print(vars_to_train)
        writer = tf.summary.FileWriter('logs', sess.graph)
    
    # Training
    start_t = time.time()
    model.fit(train_data,valid_data)
    train_time = time.time() - start_t
    print("traing time:{0}".format(train_time) + "[sec]")
    if valid_data.num>0:
        # Validation
        start_t = time.time()
        validation_cost,validation_metrics,prediction_data=model.pred_and_eval(valid_data)
        infer_time = time.time() - start_t
        print("final cost =",validation_cost)
        print("accuracy   =",validation_metrics["accuracy"])
        print("validation time:{0}".format(infer_time) + "[sec]")
    # Saving
    if config["save_info_valid"] is not None:
        result={}
        result["validation_cost"]=validation_cost
        result["validation_accuracy"]=validation_metrics
        result["train_time"]=train_time
        result["infer_time"]=infer_time
        save_path=config["save_info_valid"]
        print("[SAVE] ",save_path)
        fp=open(save_path,"w")
        json.dump(result,fp, indent=4, cls=NumPyArangeEncoder)
    
    if config["export_model"]:
        try:
            print("[SAVE]",config["export_model"])
            graph_def = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), ['output'])
            tf.train.write_graph(graph_def, '.', config["export_model"], as_text=False)
        except:
            print('[ERROR] output has been not found')
    if config["save_result_valid"] is not None:
        filename=config["save_result_valid"]
        save_prediction(filename,prediction_data)
    if config["make_plot"]:
        plot_cost(config,valid_data,model)
        plot_auc(config,valid_data.labels,np.array(prediction_data))
示例#2
0
def _train(layers):
    config = _get_config()
    _, train_data, valid_data, info = load_and_split_data(
        config,
        filename=config["dataset"],
        valid_data_rate=config["validation_data_rate"])
    metric_name = "accuracy"
    with tf.Session() as sess:
        model = CoreModel(sess, config, info)
        model.build(GCN(layers), True, False, None)
        model.fit(train_data, valid_data)
        _, valid_metrics, _ = model.pred_and_eval(valid_data)
    return valid_metrics[metric_name]
示例#3
0
文件: gcn.py 项目: UnixJunkie/kGCN
def train(sess, graph, config):
    if config["validation_dataset"] is None:
        _, train_data, valid_data, info = load_and_split_data(
            config,
            filename=config["dataset"],
            valid_data_rate=config["validation_data_rate"])
    else:
        print("[INFO] training")
        train_data, info = load_data(config, filename=config["dataset"])
        print("[INFO] validation")
        valid_data, valid_info = load_data(
            config, filename=config["validation_dataset"])
        info["graph_node_num"] = max(info["graph_node_num"],
                                     valid_info["graph_node_num"])
        info["graph_num"] = info["graph_num"] + valid_info["graph_num"]

    model = CoreModel(sess, config, info)
    load_model_py(model, config["model.py"])

    metric_name = ("mse" if config["task"] == "regression" else "gmfe"
                   if config["task"] == "regression_gmfe" else "accuracy")

    if config["profile"]:
        vars_to_train = tf.trainable_variables()
        print(vars_to_train)

    # Training
    start_t = time.time()
    model.fit(train_data, valid_data)
    train_time = time.time() - start_t
    print(f"training time: {train_time}[sec]")
    if valid_data.num > 0:
        # Validation
        start_t = time.time()
        valid_cost, valid_metrics, prediction_data = model.pred_and_eval(
            valid_data)
        infer_time = time.time() - start_t
        print(f"final cost = {valid_cost}\n"
              f"{metric_name} = {valid_metrics[metric_name]}\n"
              f"validation time: {infer_time}[sec]\n")
        # Saving
        if config["save_info_valid"] is not None:
            result = {}
            result["validation_cost"] = valid_cost
            result["validation_accuracy"] = valid_metrics
            result["train_time"] = train_time
            result["infer_time"] = infer_time
            if config["task"] != "link_prediction":
                result["valid_metrics"] = compute_metrics(
                    config, info, prediction_data, valid_data.labels)
            ##
            save_path = config["save_info_valid"]
            os.makedirs(os.path.dirname(save_path), exist_ok=True)
            print(f"[SAVE] {save_path}")
            with open(save_path, "w") as fp:
                json.dump(result, fp, indent=4, cls=NumPyArangeEncoder)

    if config["export_model"]:
        try:
            print(f"[SAVE] {config['export_model']}")
            graph_def = graph_util.convert_variables_to_constants(
                sess, graph.as_graph_def(), ['output'])
            tf.train.write_graph(graph_def,
                                 '.',
                                 config["export_model"],
                                 as_text=False)
        except:
            print('[ERROR] output has been not found')
    if config["save_result_valid"] is not None:
        filename = config["save_result_valid"]
        save_prediction(filename, prediction_data)
    if config["make_plot"]:
        if config["task"] == "regression" or config[
                "task"] == "regression_gmfe":
            # plot_cost(config, valid_data, model)
            plot_r2(config, valid_data.labels, np.array(prediction_data))
        elif config["task"] == "link_prediction":
            plot_cost(config, valid_data, model)
        else:
            plot_cost(config, valid_data, model)
            plot_auc(config, valid_data.labels, np.array(prediction_data))
示例#4
0
def train(sess, config):
    if config["validation_dataset"] is None:
        all_data, train_data, valid_data, info = load_and_split_data(
            config,
            filename=config["dataset"],
            valid_data_rate=config["validation_data_rate"])
    else:
        print("[INFO] training")
        train_data, info = load_data(config, filename=config["dataset"])
        print("[INFO] validation")
        valid_data, valid_info = load_data(
            config, filename=config["validation_dataset"])
        info["graph_node_num"] = max(info["graph_node_num"],
                                     valid_info["graph_node_num"])
        info["graph_num"] = info["graph_num"] + valid_info["graph_num"]
    # train model
    graph_index_list = []
    for i in range(info["graph_num"]):
        graph_index_list.append([i, i])
    info.graph_index_list = graph_index_list
    info.pos_weight = get_pos_weight(train_data)
    info.norm = get_norm(train_data)
    print(f"pos_weight={info.pos_weight}")
    print(f"norm={info.norm}")

    model = CoreModel(sess,
                      config,
                      info,
                      construct_feed_callback=construct_feed)
    load_model_py(model, config["model.py"])

    vars_to_train = tf.trainable_variables()
    for v in vars_to_train:
        print(v)

    # Training
    start_t = time.time()
    model.fit(train_data, valid_data)
    train_time = time.time() - start_t
    print(f"training time:{train_time}[sec]")
    # Validation
    start_t = time.time()
    validation_cost, validation_accuracy, validation_prediction_data = model.pred_and_eval(
        valid_data)
    training_cost, training_accuracy, training_prediction_data = model.pred_and_eval(
        train_data)
    infer_time = time.time() - start_t
    print(f"final cost(training  ) = {training_cost}\n"
          f"accuracy  (training  ) = {training_accuracy['accuracy']}\n"
          f"final cost(validation) = {validation_cost}\n"
          f"accuracy  (validation) = {validation_accuracy['accuracy']}\n"
          f"infer time:{infer_time}[sec]\n")
    # Saving
    if config["save_info_valid"] is not None:
        result = {}
        result["validation_cost"] = validation_cost
        result["validation_accuracy"] = validation_accuracy["accuracy"]
        result["train_time"] = train_time
        result["infer_time"] = infer_time
        save_path = config["save_info_valid"]
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        print(f"[SAVE] {save_path}")
        with open(save_path, "w") as fp:
            json.dump(result, fp, indent=4)

    if config["save_info_train"] is not None:
        result = {}
        result["test_cost"] = training_cost
        result["test_accuracy"] = training_accuracy["accuracy"]
        result["train_time"] = train_time
        save_path = config["save_info_train"]
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        print(f"[SAVE] {save_path}")
        with open(save_path, "w") as fp:
            json.dump(result, fp, indent=4, cls=NumPyArangeEncoder)

    if "reconstruction_valid" in config:
        filename = config["reconstruction_valid"]
        print(os.path.dirname(filename))
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        print(f"[SAVE] {filename}")
        joblib.dump(validation_prediction_data, filename)
    if "reconstruction_train" in config:
        filename = config["reconstruction_train"]
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        print(f"[SAVE] {filename}")
        joblib.dump(training_prediction_data, filename)
示例#5
0
文件: gcn_gen.py 项目: 0h-n0/kGCN
def train(sess, config):
    batch_size = config["batch_size"]
    learning_rate = config["learning_rate"]

    all_data, train_data, valid_data, info = load_and_split_data(
        config,
        filename=config["dataset"],
        valid_data_rate=config["validation_data_rate"])
    # train model
    graph_index_list = []
    for i in range(all_data.num):
        graph_index_list.append([i, i])
    info.graph_index_list = graph_index_list
    info.pos_weight = get_pos_weight(train_data)
    info.norm = get_norm(train_data)
    print("pos_weight=", info.pos_weight)
    print("norm=", info.pos_weight)

    model = CoreModel(sess,
                      config,
                      info,
                      construct_feed_callback=construct_feed)
    model.build(importlib.import_module(config["model.py"]))

    vars_to_train = tf.trainable_variables()
    for v in vars_to_train:
        print(v)

    # Training
    start_t = time.time()
    model.fit(train_data, valid_data)
    train_time = time.time() - start_t
    print("traing time:{0}".format(train_time) + "[sec]")
    # Validation
    start_t = time.time()
    validation_cost, validation_accuracy, validation_prediction_data = model.pred_and_eval(
        valid_data)
    training_cost, training_accuracy, training_prediction_data = model.pred_and_eval(
        train_data)
    infer_time = time.time() - start_t
    print("final cost(training  ) =", training_cost)
    print("accuracy  (training  ) =", training_accuracy["accuracy"])
    print("final cost(validation) =", validation_cost)
    print("accuracy  (validation) =", validation_accuracy["accuracy"])
    print("infer time:{0}".format(infer_time) + "[sec]")
    # Saving
    if config["save_info_valid"] is not None:
        result = {}
        result["validation_cost"] = validation_cost
        result["validation_accuracy"] = validation_accuracy["accuracy"]
        result["train_time"] = train_time
        result["infer_time"] = infer_time
        save_path = config["save_info_valid"]
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        print("[SAVE] ", save_path)
        fp = open(save_path, "w")
        json.dump(result, fp, indent=4)

    if config["save_info_train"] is not None:
        result = {}
        result["test_cost"] = training_cost
        result["test_accuracy"] = training_accuracy["accuracy"]
        result["train_time"] = train_time
        save_path = config["save_info_train"]
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        print("[SAVE] ", save_path)
        fp = open(save_path, "w")
        json.dump(result, fp, indent=4, cls=NumPyArangeEncoder)

    if "reconstruction_valid" in config:
        filename = config["reconstruction_valid"]
        print(os.path.dirname(filename))
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        print("[SAVE]", filename)
        joblib.dump(validation_prediction_data, filename)
    if "reconstruction_train" in config:
        filename = config["reconstruction_train"]
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        print("[SAVE]", filename)
        joblib.dump(training_prediction_data, filename)
示例#6
0
    m.append_lazy(keras.layers.Conv1D, conv_args)
    m.append_lazy(keras.layers.MaxPooling1D, [
        dict(pool_size=4),
    ])
    lstm_args = [
        dict(units=i, return_sequences=False, go_backwards=True)
        for i in [32, 48, 64]
    ]
    m.append_lazy(keras.layers.LSTM, lstm_args)
    return m


if __name__ == '__main__':
    config = _get_config()
    _, train_data, valid_data, info = load_and_split_data(
        config,
        filename=config["dataset"],
        valid_data_rate=config["validation_data_rate"])
    m1 = gcn_model()
    m2 = linear_model(info.sequence_symbol_num)
    m = m1 + m2
    dense_args = [dict(units=i, activation='relu') for i in [32, 64, 128]]
    m.append_lazy(keras.layers.Dense, dense_args)
    m.append_lazy(keras.layers.Dense, [
        dict(units=info.label_dim, activation='softmax'),
    ])
    g = Generator(m, dump_nn_graph=True)
    num_nodes = 12
    num_layer_type = 4
    searcher = Searcher()
    searcher.register_trial('graph', g)
    n_trials = 30
示例#7
0
def train(sess, graph, config):
    from sklearn.metrics import roc_curve, auc, accuracy_score, precision_recall_fscore_support
    batch_size = config["batch_size"]
    learning_rate = config["learning_rate"]

    if config["validation_dataset"] is None:
        _, train_data, valid_data, info = load_and_split_data(
            config,
            filename=config["dataset"],
            valid_data_rate=config["validation_data_rate"])
    else:
        print("[INFO] training")
        train_data, info = load_data(config, filename=config["dataset"])
        print("[INFO] validation")
        valid_data, valid_info = load_data(
            config, filename=config["validation_dataset"])
        info["graph_node_num"] = max(info["graph_node_num"],
                                     valid_info["graph_node_num"])
        info["graph_num"] = info["graph_num"] + valid_info["graph_num"]

    model = CoreModel(sess, config, info)
    load_model_py(model, config["model.py"])

    if config["profile"]:
        vars_to_train = tf.trainable_variables()
        print(vars_to_train)
        writer = tf.summary.FileWriter('logs', sess.graph)

    # Training
    start_t = time.time()
    model.fit(train_data, valid_data)
    train_time = time.time() - start_t
    print("traing time:{0}".format(train_time) + "[sec]")
    if valid_data.num > 0:
        # Validation
        start_t = time.time()
        validation_cost, validation_metrics, prediction_data = model.pred_and_eval(
            valid_data)
        infer_time = time.time() - start_t
        print("final cost =", validation_cost)
        print("accuracy   =", validation_metrics["accuracy"])
        print("validation time:{0}".format(infer_time) + "[sec]")
        # Saving
        if config["save_info_valid"] is not None:
            result = {}
            result["validation_cost"] = validation_cost
            result["validation_accuracy"] = validation_metrics
            result["train_time"] = train_time
            result["infer_time"] = infer_time
            ##
            pred_score = np.array(prediction_data)
            if len(pred_score.shape) == 3:  # multi-label-multi-task
                # #data x # task x #class
                # => this program supports only 2 labels
                pred_score = pred_score[:, :, 1]
            true_label = np.array(valid_data.labels)
            # #data x # task x #class
            if len(pred_score.shape) == 1:
                pred_score = pred_score[:, np.newaxis]
            if len(true_label.shape) == 1:
                true_label = true_label[:, np.newaxis]
            v = []
            for i in range(info.label_dim):
                el = {}
                if config["task"] == "regression":
                    el["r2"] = sklearn.metrics.r2_score(
                        true_label[:, i], pred_score[:, i])
                    el["mse"] = sklearn.metrics.mean_squared_error(
                        true_label[:, i], pred_score[:, i])
                elif config["task"] == "regression_gmfe":
                    el["gmfe"] = np.exp(
                        np.mean(np.log(true_label[:, i] / pred_score[:, i])))
                else:
                    pred = np.zeros(pred_score.shape)
                    pred[pred_score > 0.5] = 1
                    fpr, tpr, _ = roc_curve(true_label[:, i],
                                            pred_score[:, i],
                                            pos_label=1)
                    roc_auc = auc(fpr, tpr)
                    acc = accuracy_score(true_label[:, i], pred[:, i])
                    scores = precision_recall_fscore_support(true_label[:, i],
                                                             pred[:, i],
                                                             average='binary')
                    el["auc"] = roc_auc
                    el["acc"] = acc
                    el["pre"] = scores[0]
                    el["rec"] = scores[1]
                    el["f"] = scores[2]
                    el["sup"] = scores[3]
                v.append(el)
            result["valid_metrics"] = el
            ##
            save_path = config["save_info_valid"]
            os.makedirs(os.path.dirname(save_path), exist_ok=True)
            print("[SAVE] ", save_path)
            fp = open(save_path, "w")
            json.dump(result, fp, indent=4, cls=NumPyArangeEncoder)

    if config["export_model"]:
        try:
            print("[SAVE]", config["export_model"])
            graph_def = graph_util.convert_variables_to_constants(
                sess, graph.as_graph_def(), ['output'])
            tf.train.write_graph(graph_def,
                                 '.',
                                 config["export_model"],
                                 as_text=False)
        except:
            print('[ERROR] output has been not found')
    if config["save_result_valid"] is not None:
        filename = config["save_result_valid"]
        save_prediction(filename, prediction_data)
    if config["make_plot"]:
        plot_cost(config, valid_data, model)
        plot_auc(config, valid_data.labels, np.array(prediction_data))