def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['half width'] = [ format.quantity(self.half_width_x.to(u.arcmin)) ] dataframe['half height'] = [ format.quantity(self.half_width_y.to(u.arcmin)) ] return dataframe
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['obscured half-width'] = [ format.quantity(self.obscured_half_width.to(u.mm)) ] # dataframe['number of sides'] = [self.num_sides] return dataframe
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe for coeff, name in zip(self.coefficients, self.coefficient_names): coeff = coeff[..., 0, 0, 0] if (np.abs(coeff.value) > 0.1).any(): sci_notation = False else: sci_notation = True if np.isscalar(coeff): dataframe[name] = [ fmt.quantity(coeff, scientific_notation=sci_notation) ] else: dataframe[name] = [ fmt.quantity(c, scientific_notation=sci_notation) for c in coeff.T.flatten() ] if self.output_name is not None: dataframe.index = [self.output_name] return dataframe
def set_variable_quantity( self, name: str, value: u.Quantity, scientific_notation: typ.Optional[bool] = None, digits_after_decimal: int = 3, ) -> typ.NoReturn: self.set_variable( name=name, value=pylatex.NoEscape(format.quantity( a=value, scientific_notation=scientific_notation, digits_after_decimal=digits_after_decimal, )) )
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['inclination'] = [ format.quantity(self.inclination.to(u.deg)) ] dataframe['clocking'] = [format.quantity(self.clocking.to(u.deg))] dataframe['clear radius'] = [ format.quantity(self.clear_radius.to(u.mm)) ] dataframe['border width'] = [ format.quantity(self.border_width.to(u.mm)) ] dataframe['thickness'] = [format.quantity(self.thickness.to(u.nm))] dataframe['oxide thickness'] = [ format.quantity(self.thickness_oxide.to(u.nm)) ] dataframe['mesh ratio'] = [ format.quantity(self.mesh_ratio.to(u.percent)) ] dataframe['mesh pitch'] = [format.quantity(self.mesh_pitch)] return dataframe
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['inclination'] = [ format.quantity(self.inclination.to(u.deg)) ] dataframe['tangential radius'] = [ format.quantity(self.tangential_radius.to(u.mm)) ] dataframe['sagittal radius'] = [ format.quantity(self.sagittal_radius.to(u.mm)) ] dataframe['slope error'] = [format.quantity(self.slope_error.value)] dataframe['ripple'] = [format.quantity(self.ripple.value)] dataframe['microroughness'] = [ format.quantity(self.microroughness.value) ] dataframe['nominal alpha'] = [ format.quantity(self.nominal_input_angle.to(u.deg)) ] dataframe['nominal beta'] = [ format.quantity(self.nominal_output_angle.to(u.deg)) ] dataframe['diffraction order'] = [ format.quantity(self.diffraction_order) ] dataframe['nominal ruling density'] = [ format.quantity(self.ruling_density.to(1 / u.mm)) ] dataframe['linear ruling coefficient'] = [ format.quantity(self.ruling_spacing_coeff_linear, scientific_notation=True) ] dataframe['quadratic ruling coefficient'] = [ format.quantity(self.ruling_spacing_coeff_quadratic, scientific_notation=True) ] dataframe['cubic ruling coefficient'] = [ format.quantity(self.ruling_spacing_coeff_cubic, scientific_notation=True) ] dataframe['aperture wedge angle'] = [ format.quantity(self.aper_wedge_angle.to(u.deg)) ] dataframe['inner half-width'] = [ format.quantity(self.inner_half_width.to(u.mm)) ] dataframe['outer half-width'] = [ format.quantity(self.outer_half_width.to(u.mm)) ] dataframe['border width'] = [ format.quantity(self.border_width.to(u.mm)) ] dataframe['inner border width'] = [ format.quantity(self.inner_border_width.to(u.mm)) ] dataframe['dynamic clearance'] = [ format.quantity(self.dynamic_clearance.to(u.mm)) ] dataframe['substrate thickness'] = [ format.quantity(self.substrate_thickness.to(u.mm)) ] return dataframe
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['clear radius'] = [format.quantity(self.clear_radius.to(u.mm))] return dataframe
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['clear radius'] = [format.quantity(self.clear_radius.to(u.mm))] dataframe['mechanical radius'] = [format.quantity(self.mech_radius.to(u.mm))] dataframe['number of sides'] = [self.num_sides] return dataframe
def dataframe(self) -> pandas.DataFrame: dataframe = super().dataframe dataframe['manufacturer'] = [self.manufacturer] dataframe['focus adjustment range'] = [ format.quantity(self.range_focus_adjustment) ] dataframe['inclination'] = [ format.quantity(self.inclination.to(u.deg)) ] dataframe['pixel width'] = [format.quantity(self.pixel_width.to(u.um))] dataframe['pixel array shape'] = [self.num_pixels] dataframe['right border width'] = [ format.quantity(self.border_width_right.to(u.mm)) ] dataframe['left border width'] = [ format.quantity(self.border_width_left.to(u.mm)) ] dataframe['top border width'] = [ format.quantity(self.border_width_top.to(u.mm)) ] dataframe['bottom border width'] = [ format.quantity(self.border_width_bottom.to(u.mm)) ] dataframe['dynamic clearance'] = [ format.quantity(self.dynamic_clearance.to(u.mm)) ] dataframe['overscan pixels'] = [self.npix_overscan] dataframe['blank pixels'] = [self.npix_blank] dataframe['temperature'] = [format.quantity(self.temperature)] dataframe['gain'] = [format.quantity(self.gain)] dataframe['readout noise'] = [format.quantity(self.readout_noise)] dataframe['dark current'] = [format.quantity(self.dark_current)] dataframe['charge diffusion'] = [ format.quantity(self.charge_diffusion) ] dataframe['frame transfer time'] = [ format.quantity(self.time_frame_transfer) ] dataframe['readout time'] = [format.quantity(self.time_readout)] dataframe['exposure length'] = [format.quantity(self.exposure_length)] dataframe['minimum exposure length'] = [ format.quantity(self.exposure_length_min) ] dataframe['maximum exposure length'] = [ format.quantity(self.exposure_length_max) ] dataframe['exposure length increment'] = [ format.quantity(self.exposure_length_increment) ] dataframe['analog-to-digital bits'] = [self.bits_analog_to_digital] dataframe['trigger index'] = [self.index_trigger] dataframe['synchronization error'] = [ format.quantity(self.error_synchronization) ] return dataframe