示例#1
0
def main():
    args = sanitize_help(get_parser()).parse_args()

    output_file = args.graphbase + '.pmap.merged'
    pmap_files = glob.glob(args.graphbase + '.subset.*.pmap')

    print('loading %d pmap files (first one: %s)' %
          (len(pmap_files), pmap_files[0]), file=sys.stderr)

    ksize = args.ksize
    nodegraph = khmer.Nodegraph(ksize, 1, 1)

    for _ in pmap_files:
        check_input_files(_, args.force)

    check_space(pmap_files, args.force)

    for pmap_file in pmap_files:
        print('merging', pmap_file, file=sys.stderr)
        nodegraph.merge_subset_from_disk(pmap_file)

    print('saving merged to', output_file, file=sys.stderr)
    nodegraph.save_partitionmap(output_file)

    if args.remove_subsets:
        print('removing pmap files', file=sys.stderr)
        for pmap_file in pmap_files:
            os.unlink(pmap_file)
示例#2
0
def main():
    info('filter-abund.py', ['counting'])
    args = sanitize_help(get_parser()).parse_args()

    check_input_files(args.input_graph, args.force)
    infiles = args.input_filename
    if ('-' in infiles or '/dev/stdin' in infiles) and not \
       args.single_output_file:
        print("Accepting input from stdin; output filename must "
              "be provided with -o.", file=sys.stderr)
        sys.exit(1)

    for filename in infiles:
        check_input_files(filename, args.force)

    check_space(infiles, args.force)

    print('loading countgraph:', args.input_graph,
          file=sys.stderr)
    countgraph = khmer.load_countgraph(args.input_graph)
    ksize = countgraph.ksize()

    print("K:", ksize, file=sys.stderr)

    # the filtering function.
    def process_fn(record):
        name = record.name
        seq = record.sequence
        seqN = seq.replace('N', 'A')

        if args.variable_coverage:  # only trim when sequence has high enough C
            med, _, _ = countgraph.get_median_count(seqN)
            if med < args.normalize_to:
                return name, seq

        _, trim_at = countgraph.trim_on_abundance(seqN, args.cutoff)

        if trim_at >= ksize:
            # be sure to not to change the 'N's in the trimmed sequence -
            # so, return 'seq' and not 'seqN'.
            return name, seq[:trim_at]

        return None, None

    if args.single_output_file:
        outfile = args.single_output_file.name
        outfp = get_file_writer(args.single_output_file, args.gzip, args.bzip)

    # the filtering loop
    for infile in infiles:
        print('filtering', infile, file=sys.stderr)
        if not args.single_output_file:
            outfile = os.path.basename(infile) + '.abundfilt'
            outfp = open(outfile, 'wb')
            outfp = get_file_writer(outfp, args.gzip, args.bzip)

        tsp = ThreadedSequenceProcessor(process_fn, n_workers=args.threads)
        tsp.start(verbose_loader(infile), outfp)

        print('output in', outfile, file=sys.stderr)
示例#3
0
def main():
    info('annotate-partitions.py', ['graph'])
    args = get_parser().parse_args()

    ksize = args.ksize
    filenames = args.input_filenames
    htable = khmer.new_hashbits(ksize, 1, 1)

    partitionmap_file = args.graphbase + '.pmap.merged'

    check_input_files(partitionmap_file, args.force)
    for _ in filenames:
        check_input_files(_, args.force)

    check_space(filenames, args.force)

    print >>sys.stderr, 'loading partition map from:', partitionmap_file
    htable.load_partitionmap(partitionmap_file)

    for infile in filenames:
        print >>sys.stderr, 'outputting partitions for', infile
        outfile = os.path.basename(infile) + '.part'
        part_count = htable.output_partitions(infile, outfile)
        print >>sys.stderr, 'output %d partitions for %s' % (
            part_count, infile)
        print >>sys.stderr, 'partitions are in', outfile
示例#4
0
def main():
    info("annotate-partitions.py", ["graph"])
    args = get_parser().parse_args()

    ksize = args.ksize
    filenames = args.input_filenames
    htable = khmer.Hashbits(ksize, 1, 1)

    partitionmap_file = args.graphbase + ".pmap.merged"

    check_input_files(partitionmap_file, args.force)
    for _ in filenames:
        check_input_files(_, args.force)

    check_space(filenames, args.force)

    print("loading partition map from:", partitionmap_file, file=sys.stderr)
    htable.load_partitionmap(partitionmap_file)

    for infile in filenames:
        print("outputting partitions for", infile, file=sys.stderr)
        outfile = os.path.basename(infile) + ".part"
        part_count = htable.output_partitions(infile, outfile)
        print("output %d partitions for %s" % (part_count, infile), file=sys.stderr)
        print("partitions are in", outfile, file=sys.stderr)
示例#5
0
def main():
    args = sanitize_help(get_parser()).parse_args()

    htfile = args.countgraph
    input_filename = args.input
    output = args.output

    infiles = [htfile, input_filename]
    for infile in infiles:
        check_input_files(infile, args.force)

    check_space(infiles, args.force)

    print('loading k-mer countgraph from', htfile, file=sys.stderr)
    countgraph = load_countgraph(htfile)
    ksize = countgraph.ksize()
    print('writing to', output.name, file=sys.stderr)

    output = csv.writer(output)
    # write headers:
    output.writerow(['name', 'median', 'average', 'stddev', 'seqlen'])

    for record in screed.open(input_filename):
        seq = record.sequence.upper()
        if 'N' in seq:
            seq = seq.replace('N', 'A')

        if ksize <= len(seq):
            medn, ave, stdev = countgraph.get_median_count(seq)
            ave, stdev = [round(x, 9) for x in (ave, stdev)]
            output.writerow([record.name, medn, ave, stdev, len(seq)])
示例#6
0
def main():
    info('annotate-partitions.py', ['graph'])
    args = get_parser().parse_args()

    ksize = args.ksize
    filenames = args.input_filenames
    nodegraph = khmer.Nodegraph(ksize, 1, 1)

    partitionmap_file = args.graphbase + '.pmap.merged'

    check_input_files(partitionmap_file, args.force)
    for _ in filenames:
        check_input_files(_, args.force)

    check_space(filenames, args.force)

    print('loading partition map from:', partitionmap_file, file=sys.stderr)
    nodegraph.load_partitionmap(partitionmap_file)

    for infile in filenames:
        print('outputting partitions for', infile, file=sys.stderr)
        outfile = os.path.basename(infile) + '.part'
        part_count = nodegraph.output_partitions(infile, outfile)
        print('output %d partitions for %s' % (
            part_count, infile), file=sys.stderr)
        print('partitions are in', outfile, file=sys.stderr)
示例#7
0
def main():
    info('merge-partitions.py', ['graph'])
    args = get_parser().parse_args()

    output_file = args.graphbase + '.pmap.merged'
    pmap_files = glob.glob(args.graphbase + '.subset.*.pmap')

    print('loading %d pmap files (first one: %s)' %
          (len(pmap_files), pmap_files[0]), file=sys.stderr)

    ksize = args.ksize
    htable = khmer.new_hashbits(ksize, 1, 1)

    for _ in pmap_files:
        check_input_files(_, args.force)

    check_space(pmap_files, args.force)

    for pmap_file in pmap_files:
        print('merging', pmap_file, file=sys.stderr)
        htable.merge_subset_from_disk(pmap_file)

    print('saving merged to', output_file, file=sys.stderr)
    htable.save_partitionmap(output_file)

    if args.remove_subsets:
        print('removing pmap files', file=sys.stderr)
        for pmap_file in pmap_files:
            os.unlink(pmap_file)
示例#8
0
def main():
    info('count-median.py', ['diginorm'])
    args = get_parser().parse_args()

    htfile = args.ctfile
    input_filename = args.input
    output_filename = args.output

    infiles = [htfile, input_filename]
    for infile in infiles:
        check_file_status(infile, args.force)

    check_space(infiles, args.force)

    print >>sys.stderr, 'loading k-mer counting table from', htfile
    htable = khmer.load_counting_hash(htfile)
    ksize = htable.ksize()

    print >>sys.stderr, 'writing to', output_filename
    output = open(output_filename, 'w')

    for record in screed.open(input_filename):
        seq = record.sequence.upper()
        if 'N' in seq:
            seq = seq.replace('N', 'G')

        if ksize <= len(seq):
            medn, ave, stdev = htable.get_median_count(seq)
            print >> output, record.name, medn, ave, stdev, len(seq)
示例#9
0
def main():
    info("count-median.py", ["diginorm"])
    args = sanitize_help(get_parser()).parse_args()

    htfile = args.countgraph
    input_filename = args.input
    output = args.output

    infiles = [htfile, input_filename]
    for infile in infiles:
        check_input_files(infile, args.force)

    check_space(infiles, args.force)

    print("loading k-mer countgraph from", htfile, file=sys.stderr)
    countgraph = load_countgraph(htfile)
    ksize = countgraph.ksize()
    print("writing to", output.name, file=sys.stderr)

    output = csv.writer(output)
    # write headers:
    output.writerow(["name", "median", "average", "stddev", "seqlen"])

    for record in screed.open(input_filename):
        seq = record.sequence.upper()
        if "N" in seq:
            seq = seq.replace("N", "A")

        if ksize <= len(seq):
            medn, ave, stdev = countgraph.get_median_count(seq)
            ave, stdev = [round(x, 9) for x in (ave, stdev)]
            output.writerow([record.name, medn, ave, stdev, len(seq)])
示例#10
0
def main(args):
    info('build-graph.py', ['graph', 'SeqAn'])

    report_on_config(args, hashtype='nodegraph')
    base = args.output_filename
    filenames = args.input_filenames

    for fname in args.input_filenames:
        check_input_files(fname, args.force)

    # if optimization args are given, do optimization
    args = functions.do_sanity_checking(args, 0.01)

    check_space(args.input_filenames, args.force)
    check_space_for_hashtable(args, 'nodegraph', args.force)

    print('Saving k-mer presence table to %s' % base, file=sys.stderr)
    print('Loading kmers from sequences in %s' %
          repr(filenames), file=sys.stderr)
    if args.no_build_tagset:
        print('We WILL NOT build the tagset.', file=sys.stderr)
    else:
        print('We WILL build the tagset (for partitioning/traversal).',
              file=sys.stderr)

    print('making nodegraph', file=sys.stderr)
    htable = khmer_args.create_nodegraph(args)

    functions.build_graph(filenames, htable, args.threads,
                          not args.no_build_tagset)

    print('Total number of unique k-mers: {0}'.format(htable.n_unique_kmers()),
          file=sys.stderr)

    print('saving k-mer presence table in', base + '.pt', file=sys.stderr)
    htable.save(base + '.pt')

    if not args.no_build_tagset:
        print('saving tagset in', base + '.tagset', file=sys.stderr)
        htable.save_tagset(base + '.tagset')

    info_fp = open(base + '.info', 'w')
    info_fp.write('%d unique k-mers' % htable.n_unique_kmers())

    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.15)
    # 0.18 is ACTUAL MAX. Do not change.

    print('false positive rate estimated to be %1.3f' % fp_rate,
          file=sys.stderr)
    print('\nfalse positive rate estimated to be %1.3f' % fp_rate,
          file=info_fp)

    print('wrote to', base + '.info and', base + '.pt', file=sys.stderr)
    if not args.no_build_tagset:
        print('and ' + base + '.tagset', file=sys.stderr)

    sys.exit(0)
示例#11
0
def main():
    args = sanitize_help(get_parser()).parse_args()

    configure_logging(args.quiet)
    check_input_files(args.datafile, args.force)
    check_space([args.datafile], args.force)

    if args.savegraph:
        tablesize = calculate_graphsize(args, "countgraph")
        check_space_for_graph(args.savegraph, tablesize, args.force)

    report_on_config(args)

    log_info("making countgraph")
    graph = khmer_args.create_countgraph(args)

    # first, load reads into graph
    rparser = khmer.ReadParser(args.datafile)
    threads = []
    log_info("consuming input, round 1 -- {datafile}", datafile=args.datafile)
    for _ in range(args.threads):
        cur_thread = threading.Thread(target=graph.consume_fasta_with_reads_parser, args=(rparser,))
        threads.append(cur_thread)
        cur_thread.start()

    for _ in threads:
        _.join()

    log_info("Total number of unique k-mers: {nk}", nk=graph.n_unique_kmers())

    fp_rate = khmer.calc_expected_collisions(graph, args.force)
    log_info("fp rate estimated to be {fpr:1.3f}", fpr=fp_rate)

    # the filtering loop
    log_info("filtering {datafile}", datafile=args.datafile)
    if args.outfile is None:
        outfile = os.path.basename(args.datafile) + ".abundfilt"
    else:
        outfile = args.outfile
    outfp = open(outfile, "wb")
    outfp = get_file_writer(outfp, args.gzip, args.bzip)

    paired_iter = broken_paired_reader(ReadParser(args.datafile), min_length=graph.ksize(), force_single=True)

    for n, is_pair, read1, read2 in paired_iter:
        assert not is_pair
        assert read2 is None

        trimmed_record, _ = trim_record(graph, read1, args.cutoff, args.variable_coverage, args.normalize_to)
        if trimmed_record:
            print((trimmed_record,))
            write_record(trimmed_record, outfp)

    log_info("output in {outfile}", outfile=outfile)

    if args.savegraph:
        log_info("Saving k-mer countgraph filename {graph}", graph=args.savegraph)
        graph.save(args.savegraph)
示例#12
0
def main():
    info('interleave-reads.py')
    args = get_parser().parse_args()

    for _ in args.infiles:
        check_file_status(_, args.force)

    check_space(args.infiles, args.force)

    s1_file = args.infiles[0]
    if len(args.infiles) == 2:
        s2_file = args.infiles[1]
    else:
        s2_file = s1_file.replace('_R1_', '_R2_')
        print >> sys.stderr, ("given only one file; "
                              "guessing that R2 file is %s" % s2_file)

    fail = False
    if not os.path.exists(s1_file):
        print >> sys.stderr, "Error! R1 file %s does not exist" % s1_file
        fail = True

    if not os.path.exists(s2_file):
        print >> sys.stderr, "Error! R2 file %s does not exist" % s2_file
        fail = True

    if fail and not args.force:
        sys.exit(1)

    print >> sys.stderr, "Interleaving:\n\t%s\n\t%s" % (s1_file, s2_file)

    counter = 0
    for read1, read2 in itertools.izip(screed.open(s1_file),
                                       screed.open(s2_file)):
        if counter % 100000 == 0:
            print >> sys.stderr, '...', counter, 'pairs'
        counter += 1

        name1 = read1.name
        if not name1.endswith('/1'):
            name1 += '/1'
        name2 = read2.name
        if not name2.endswith('/2'):
            name2 += '/2'

        assert name1[:-2] == name2[:-2], \
            "This doesn't look like paired data! %s %s" % (name1, name2)

        read1.name = name1
        read2.name = name2
        write_record(read1, args.output)
        write_record(read2, args.output)

    print >> sys.stderr, 'final: interleaved %d pairs' % counter

    print >> sys.stderr, 'output written to', args.output
示例#13
0
def main():
    info('optimal_args_nodegraph.py', ['graph', 'SeqAn'])
    args = get_parser().parse_args()
    report_on_config(args, graphtype='nodegraph')


    filenames = args.input_filenames
    base = filenames[0]
    for _ in args.input_filenames:
        check_input_files(_, False)

    check_space(args.input_filenames, False)

    print('Counting kmers from sequences in %s' % repr(filenames),
          file=sys.stderr)

    htable = khmer.new_nodegraph(args.ksize, args.max_tablesize, args.n_tables)
    target_method = htable.consume_fasta_with_reads_parser

    for _, filename in enumerate(filenames):
        rparser = khmer.ReadParser(filename)
        threads = []
        print('consuming input', filename, file=sys.stderr)
        for num in xrange(args.threads):
            cur_thread = threading.Thread(
                target=target_method, args=(rparser,))
            threads.append(cur_thread)
            cur_thread.start()

        for thread in threads:
            thread.join()
    unique_kmers = htable.n_unique_kmers()
    print('Total number of unique k-mers: {0}'.format(unique_kmers),
          file=sys.stderr)

    info_optimal = open(base + '.optimal_args', 'w')

    fp_rate = khmer.calc_expected_collisions(htable)
    print('fp rate estimated to be %1.3f' % fp_rate, file=sys.stderr)

    if fp_rate > 0.15:          # 0.18 is ACTUAL MAX. Do not change.
        print("**", file=sys.stderr)
        print("** ERROR: the graph structure is too small for this data set."
              "Increase table size/# tables.", file=sys.stderr)
        print("**", file=sys.stderr)
        if not False:
            sys.exit(1)

    to_print = graphsize_args_report(unique_kmers, fp_rate)
    
    print(to_print, file=info_optimal)
    
    print('optimal arguments were written to', base + '.optimal_args',
          file=sys.stderr)
def main():

    info('make-initial-stoptags.py', ['graph'])
    args = get_parser().parse_args()

    graphbase = args.graphbase

    # @RamRS: This might need some more work
    infiles = [graphbase + '.pt', graphbase + '.tagset']
    if args.stoptags:
        infiles.append(args.stoptags)
    for _ in infiles:
        check_input_files(_, args.force)

    check_space(infiles, args.force)

    print >>sys.stderr, 'loading htable %s.pt' % graphbase
    htable = khmer.load_hashbits(graphbase + '.pt')

    # do we want to load stop tags, and do they exist?
    if args.stoptags:
        print >>sys.stderr, 'loading stoptags from', args.stoptags
        htable.load_stop_tags(args.stoptags)

    print >>sys.stderr, 'loading tagset %s.tagset...' % graphbase
    htable.load_tagset(graphbase + '.tagset')

    ksize = htable.ksize()
    counting = khmer.new_counting_hash(ksize, args.min_tablesize,
                                       args.n_tables)

    # divide up into SUBSET_SIZE fragments
    divvy = htable.divide_tags_into_subsets(args.subset_size)

    # pick off the first one
    if len(divvy) == 1:
        start, end = 0, 0
    else:
        start, end = divvy[:2]

    # partition!
    print >>sys.stderr, 'doing pre-partitioning from', start, 'to', end
    subset = htable.do_subset_partition(start, end)

    # now, repartition...
    print >>sys.stderr, 'repartitioning to find HCKs.'
    htable.repartition_largest_partition(subset, counting,
                                         EXCURSION_DISTANCE,
                                         EXCURSION_KMER_THRESHOLD,
                                         EXCURSION_KMER_COUNT_THRESHOLD)

    print >>sys.stderr, 'saving stop tags'
    htable.save_stop_tags(graphbase + '.stoptags')
    print >> sys.stderr, 'wrote to:', graphbase + '.stoptags'
示例#15
0
def main(args):
    info('build-graph.py', ['graph', 'SeqAn'])

    report_on_config(args, hashtype='hashbits')
    base = args.output_filename
    filenames = args.input_filenames

    for fname in args.input_filenames:
        check_input_files(fname, args.force)

    check_space(args.input_filenames, args.force)
    check_space_for_hashtable(
        (float(args.n_tables * args.min_tablesize) / 8.), args.force)

    print >>sys.stderr, 'Saving k-mer presence table to %s' % base
    print >>sys.stderr, 'Loading kmers from sequences in %s' % repr(filenames)
    if args.no_build_tagset:
        print >>sys.stderr, 'We WILL NOT build the tagset.'
    else:
        print >>sys.stderr, 'We WILL build the tagset', \
                            ' (for partitioning/traversal).'

    print >>sys.stderr, 'making k-mer presence table'
    htable = khmer.new_hashbits(args.ksize, args.min_tablesize, args.n_tables)

    functions.build_graph(filenames, htable, args.threads,
                          not args.no_build_tagset)

    print >> sys.stderr, 'Total number of unique k-mers: {0}'.format(
        htable.n_unique_kmers())

    print >>sys.stderr, 'saving k-mer presence table in', base + '.pt'
    htable.save(base + '.pt')

    if not args.no_build_tagset:
        print >>sys.stderr, 'saving tagset in', base + '.tagset'
        htable.save_tagset(base + '.tagset')

    info_fp = open(base + '.info', 'w')
    info_fp.write('%d unique k-mers' % htable.n_unique_kmers())

    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.15)
    # 0.18 is ACTUAL MAX. Do not change.

    print >>sys.stderr, 'false positive rate estimated to be %1.3f' % fp_rate
    print >>info_fp, '\nfalse positive rate estimated to be %1.3f' % fp_rate

    print >> sys.stderr, 'wrote to', base + '.info and', base + '.pt'
    if not args.no_build_tagset:
        print >> sys.stderr, 'and ' + base + '.tagset'

    sys.exit(0)
示例#16
0
def main():
    info('filter-abund.py', ['counting'])
    args = get_parser().parse_args()

    check_input_files(args.input_table, args.force)
    infiles = args.input_filename
    for filename in infiles:
        check_input_files(filename, args.force)

    check_space(infiles, args.force)

    print('loading counting table:', args.input_table,
          file=sys.stderr)
    htable = khmer.load_counting_hash(args.input_table)
    ksize = htable.ksize()

    print("K:", ksize, file=sys.stderr)

    # the filtering function.
    def process_fn(record):
        name = record.name
        seq = record.sequence
        seqN = seq.replace('N', 'A')

        if args.variable_coverage:  # only trim when sequence has high enough C
            med, _, _ = htable.get_median_count(seqN)
            if med < args.normalize_to:
                return name, seq

        _, trim_at = htable.trim_on_abundance(seqN, args.cutoff)

        if trim_at >= ksize:
            # be sure to not to change the 'N's in the trimmed sequence -
            # so, return 'seq' and not 'seqN'.
            return name, seq[:trim_at]

        return None, None

    # the filtering loop
    for infile in infiles:
        print('filtering', infile, file=sys.stderr)
        if args.single_output_filename != '':
            outfile = args.single_output_filename
            outfp = open(outfile, 'a')
        else:
            outfile = os.path.basename(infile) + '.abundfilt'
            outfp = open(outfile, 'w')

        tsp = ThreadedSequenceProcessor(process_fn, n_workers=args.threads)
        tsp.start(verbose_loader(infile), outfp)

        print('output in', outfile, file=sys.stderr)
示例#17
0
def main():
    info('filter-abund.py', ['counting'])
    args = get_parser().parse_args()

    counting_ht = args.input_table
    infiles = args.input_filename

    for _ in infiles:
        check_file_status(_, args.force)

    check_space(infiles, args.force)

    print >>sys.stderr, 'loading hashtable'
    htable = khmer.load_counting_hash(counting_ht)
    ksize = htable.ksize()

    print >>sys.stderr, "K:", ksize

    # the filtering function.
    def process_fn(record):
        name = record['name']
        seq = record['sequence']
        if 'N' in seq:
            return None, None

        if args.variable_coverage:  # only trim when sequence has high enough C
            med, _, _ = htable.get_median_count(seq)
            if med < args.normalize_to:
                return name, seq

        trim_seq, trim_at = htable.trim_on_abundance(seq, args.cutoff)

        if trim_at >= ksize:
            return name, trim_seq

        return None, None

    # the filtering loop
    for infile in infiles:
        print >>sys.stderr, 'filtering', infile
        if args.single_output_filename != '':
            outfile = args.single_output_filename
            outfp = open(outfile, 'a')
        else:
            outfile = os.path.basename(infile) + '.abundfilt'
            outfp = open(outfile, 'w')

        tsp = ThreadedSequenceProcessor(process_fn, n_workers=args.threads)
        tsp.start(verbose_loader(infile), outfp)

        print >>sys.stderr, 'output in', outfile
示例#18
0
def main():
    info('interleave-reads.py')
    args = sanitize_help(get_parser()).parse_args()

    check_input_files(args.left, args.force)
    check_input_files(args.right, args.force)
    check_space([args.left, args.right], args.force)

    s1_file = args.left
    s2_file = args.right

    fail = False

    print("Interleaving:\n\t%s\n\t%s" % (s1_file, s2_file), file=sys.stderr)

    outfp = get_file_writer(args.output, args.gzip, args.bzip)

    counter = 0
    screed_iter_1 = screed.open(s1_file)
    screed_iter_2 = screed.open(s2_file)
    for read1, read2 in zip_longest(screed_iter_1, screed_iter_2):
        if read1 is None or read2 is None:
            print(("ERROR: Input files contain different number"
                   " of records."), file=sys.stderr)
            sys.exit(1)

        if counter % 100000 == 0:
            print('...', counter, 'pairs', file=sys.stderr)
        counter += 1

        name1 = read1.name
        name2 = read2.name

        if not args.no_reformat:
            if not check_is_left(name1):
                name1 += '/1'
            if not check_is_right(name2):
                name2 += '/2'

            read1.name = name1
            read2.name = name2

            if not check_is_pair(read1, read2):
                print("ERROR: This doesn't look like paired data! "
                      "%s %s" % (read1.name, read2.name), file=sys.stderr)
                sys.exit(1)

        write_record_pair(read1, read2, outfp)

    print('final: interleaved %d pairs' % counter, file=sys.stderr)
    print('output written to', describe_file_handle(outfp), file=sys.stderr)
示例#19
0
def main():
    args = sanitize_help(get_parser()).parse_args()

    configure_logging(args.quiet)

    infiles = args.input_filename
    if ('-' in infiles or '/dev/stdin' in infiles) and not \
       args.single_output_file:
        log_error("Accepting input from stdin; output filename must "
                  "be provided with -o.")
        sys.exit(1)

    for filename in infiles:
        check_input_files(filename, args.force)

    check_space(infiles, args.force)

    log_info('loading countgraph: {graph}', graph=args.input_graph)
    countgraph = khmer.load_countgraph(args.input_graph)
    ksize = countgraph.ksize()

    log_info("K: {ksize}", ksize=ksize)

    if args.single_output_file:
        outfile = args.single_output_file.name
        outfp = get_file_writer(args.single_output_file, args.gzip, args.bzip)

    # the filtering loop
    for infile in infiles:
        log_info('filtering {infile}', infile=infile)
        if not args.single_output_file:
            outfile = os.path.basename(infile) + '.abundfilt'
            outfp = open(outfile, 'wb')
            outfp = get_file_writer(outfp, args.gzip, args.bzip)

        paired_iter = broken_paired_reader(ReadParser(infile),
                                           min_length=ksize,
                                           force_single=True)

        for n, is_pair, read1, read2 in paired_iter:
            assert not is_pair
            assert read2 is None

            trimmed_record, _ = trim_record(countgraph, read1, args.cutoff,
                                            args.variable_coverage,
                                            args.normalize_to)
            if trimmed_record:
                write_record(trimmed_record, outfp)

        log_info('output in {outfile}', outfile=outfile)
示例#20
0
def main(args):
    info("build-graph.py", ["graph", "SeqAn"])

    report_on_config(args, hashtype="hashbits")
    base = args.output_filename
    filenames = args.input_filenames

    for fname in args.input_filenames:
        check_input_files(fname, args.force)

    check_space(args.input_filenames, args.force)
    check_space_for_hashtable((float(args.n_tables * args.min_tablesize) / 8.0), args.force)

    print("Saving k-mer presence table to %s" % base, file=sys.stderr)
    print("Loading kmers from sequences in %s" % repr(filenames), file=sys.stderr)
    if args.no_build_tagset:
        print("We WILL NOT build the tagset.", file=sys.stderr)
    else:
        print("We WILL build the tagset (for partitioning/traversal).", file=sys.stderr)

    print("making k-mer presence table", file=sys.stderr)
    htable = khmer.new_hashbits(args.ksize, args.min_tablesize, args.n_tables)

    functions.build_graph(filenames, htable, args.threads, not args.no_build_tagset)

    print("Total number of unique k-mers: {0}".format(htable.n_unique_kmers()), file=sys.stderr)

    print("saving k-mer presence table in", base + ".pt", file=sys.stderr)
    htable.save(base + ".pt")

    if not args.no_build_tagset:
        print("saving tagset in", base + ".tagset", file=sys.stderr)
        htable.save_tagset(base + ".tagset")

    info_fp = open(base + ".info", "w")
    info_fp.write("%d unique k-mers" % htable.n_unique_kmers())

    fp_rate = khmer.calc_expected_collisions(htable, args.force, max_false_pos=0.15)
    # 0.18 is ACTUAL MAX. Do not change.

    print("false positive rate estimated to be %1.3f" % fp_rate, file=sys.stderr)
    print("\nfalse positive rate estimated to be %1.3f" % fp_rate, file=info_fp)

    print("wrote to", base + ".info and", base + ".pt", file=sys.stderr)
    if not args.no_build_tagset:
        print("and " + base + ".tagset", file=sys.stderr)

    sys.exit(0)
示例#21
0
def main():
    info('split-paired-reads.py')
    args = get_parser().parse_args()

    infile = args.infile

    check_file_status(infile, args.force)
    filenames = [infile]
    check_space(filenames, args.force)

    if args.output_directory:
        if not os.path.exists(args.output_directory):
            os.makedirs(args.output_directory)
        out1 = args.output_directory + '/' + os.path.basename(infile) + '.1'
        out2 = args.output_directory + '/' + os.path.basename(infile) + '.2'
    else:
        out1 = os.path.basename(infile) + '.1'
        out2 = os.path.basename(infile) + '.2'

    # OVERRIDE defaults with -1, -2
    if args.output_first:
        out1 = args.output_first
    if args.output_second:
        out2 = args.output_second

    fp_out1 = open(out1, 'w')
    fp_out2 = open(out2, 'w')

    counter1 = 0
    counter2 = 0
    index = None
    for index, record in enumerate(screed.open(infile)):
        if index % 100000 == 0 and index:
            print >> sys.stderr, '...', index

        name = record.name
        if name.endswith('/1'):
            write_record(record, fp_out1)
            counter1 += 1
        elif name.endswith('/2'):
            write_record(record, fp_out2)
            counter2 += 1

    print >> sys.stderr, "DONE; split %d sequences (%d left, %d right)" % \
        (index + 1, counter1, counter2)
    print >> sys.stderr, "/1 reads in %s" % out1
    print >> sys.stderr, "/2 reads in %s" % out2
def main():
    info('extract-paired-reads.py')
    args = get_parser().parse_args()

    check_input_files(args.infile, args.force)
    infiles = [args.infile]
    check_space(infiles, args.force)

    outfile = os.path.basename(args.infile)
    if len(sys.argv) > 2:
        outfile = sys.argv[2]

    single_fp = open(outfile + '.se', 'w')
    paired_fp = open(outfile + '.pe', 'w')

    print >>sys.stderr, 'reading file "%s"' % args.infile
    print >>sys.stderr, 'outputting interleaved pairs to "%s.pe"' % outfile
    print >>sys.stderr, 'outputting orphans to "%s.se"' % outfile

    n_pe = 0
    n_se = 0

    screed_iter = screed.open(args.infile, parse_description=False)
    for index, is_pair, read1, read2 in broken_paired_reader(screed_iter):
        if index % 100000 == 0 and index > 0:
            print >>sys.stderr, '...', index

        if is_pair:
            write_record_pair(read1, read2, paired_fp)
            n_pe += 1
        else:
            write_record(read1, single_fp)
            n_se += 1

    single_fp.close()
    paired_fp.close()

    if n_pe == 0:
        raise Exception("no paired reads!? check file formats...")

    print >>sys.stderr, 'DONE; read %d sequences,' \
        ' %d pairs and %d singletons' % \
        (n_pe * 2 + n_se, n_pe, n_se)

    print >> sys.stderr, 'wrote to: ' + outfile \
        + '.se' + ' and ' + outfile + '.pe'
示例#23
0
def main():
    info('count-median.py', ['diginorm'])
    args = get_parser().parse_args()

    htfile = args.ctfile
    input_filename = args.input
    output_filename = args.output

    infiles = [htfile, input_filename]
    for infile in infiles:
        check_input_files(infile, args.force)

    check_space(infiles, args.force)

    print('loading k-mer counting table from', htfile, file=sys.stderr)
    htable = khmer.load_counting_hash(htfile)
    ksize = htable.ksize()

    print('writing to', output_filename, file=sys.stderr)
    output = open(output_filename, 'w')

    if args.csv:
        output = csv.writer(output)
        # write headers:
        output.writerow(['name', 'median', 'average', 'stddev', 'seqlen'])

    parse_description = True            # @legacy behavior: split seq headers
    if args.csv:
        parse_description = False       # only enable if we're doing csv out

    for record in screed.open(input_filename,
                              parse_description=parse_description):
        seq = record.sequence.upper()
        if 'N' in seq:
            seq = seq.replace('N', 'A')

        if ksize <= len(seq):
            medn, ave, stdev = htable.get_median_count(seq)
            ave, stdev = [round(x, 9) for x in (ave, stdev)]
            if args.csv:
                output.writerow([record.name, medn, ave, stdev, len(seq)])
            else:
                print(record.name, medn, ave, stdev, len(seq), file=output)
示例#24
0
def main():
    info('count-overlap.py', ['counting'])
    args = get_parser().parse_args()
    report_on_config(args, hashtype='hashbits')

    for infile in [args.ptfile, args.fafile]:
        check_input_files(infile, args.force)

    check_space([args.ptfile, args.fafile], args.force)

    print('loading k-mer presence table from', args.ptfile, file=sys.stderr)
    ht1 = khmer.load_hashbits(args.ptfile)
    kmer_size = ht1.ksize()

    output = open(args.report_filename, 'w')
    f_curve_obj = open(args.report_filename + '.curve', 'w')
    if args.csv:
        f_curve_obj_csv = csv.writer(f_curve_obj)
        # write headers:
        f_curve_obj_csv.writerow(['input_seq', 'overlap_kmer'])

    ht2 = khmer.new_hashbits(kmer_size, args.min_tablesize, args.n_tables)

    (n_unique, n_overlap, list_curve) = ht2.count_overlap(args.fafile, ht1)

    printout1 = """\
dataset1(pt file): %s
dataset2: %s

# of unique k-mers in dataset2: %d
# of overlap unique k-mers: %d

""" % (args.ptfile, args.fafile, n_unique, n_overlap)
    output.write(printout1)

    for i in range(100):
        if args.csv:
            f_curve_obj_csv.writerow([list_curve[100 + i], list_curve[i]])
        else:
            print(list_curve[100 + i], list_curve[i], file=f_curve_obj)

    print('wrote to: ' + args.report_filename, file=sys.stderr)
示例#25
0
def main():
    info('filter-stoptags.py', ['graph'])
    args = get_parser().parse_args()
    stoptags = args.stoptags_file
    infiles = args.input_filenames

    for _ in infiles:
        check_input_files(_, args.force)

    check_space(infiles, args.force)

    print >>sys.stderr, 'loading stop tags, with K', args.ksize
    htable = khmer.new_hashbits(args.ksize, 1, 1)
    htable.load_stop_tags(stoptags)

    def process_fn(record):
        name = record['name']
        seq = record['sequence']
        if 'N' in seq:
            return None, None

        trim_seq, trim_at = htable.trim_on_stoptags(seq)

        if trim_at >= args.ksize:
            return name, trim_seq

        return None, None

    # the filtering loop
    for infile in infiles:
        print >>sys.stderr, 'filtering', infile
        outfile = os.path.basename(infile) + '.stopfilt'

        outfp = open(outfile, 'w')

        tsp = ThreadedSequenceProcessor(process_fn)
        tsp.start(verbose_loader(infile), outfp)

        print >>sys.stderr, 'output in', outfile
示例#26
0
def main():
    args = sanitize_help(get_parser()).parse_args()
    stoptags = args.stoptags_file
    infiles = args.input_filenames

    for _ in infiles:
        check_input_files(_, args.force)

    check_space(infiles, args.force)

    print('loading stop tags, with K', args.ksize, file=sys.stderr)
    nodegraph = Nodegraph(args.ksize, 1, 1)
    nodegraph.load_stop_tags(stoptags)

    def process_fn(record):
        name = record.name
        seq = record.sequence
        if 'N' in seq:
            return None, None

        trim_seq, trim_at = nodegraph.trim_on_stoptags(seq)

        if trim_at >= args.ksize:
            return name, trim_seq

        return None, None

    # the filtering loop
    for infile in infiles:
        print('filtering', infile, file=sys.stderr)
        outfile = os.path.basename(infile) + '.stopfilt'

        outfp = open(outfile, 'w')

        tsp = ThreadedSequenceProcessor(process_fn)
        tsp.start(verbose_loader(infile), outfp)

        print('output in', outfile, file=sys.stderr)
def main():
    info('merge-stoptags.py')
    args = get_parser().parse_args()

    stdbase = args.stdbase

    # @RamRS: This might need some more work
    infiles = []
    for _ in glob.glob(stdbase + "*/*.stoptags") :
    	if os.path.exists(_):
        	check_input_files(_, False)
        	infiles.append(_)

    check_space(infiles, False)
    ht = khmer.new_hashbits(args.ksize, 1, 1)
    for _ in infiles:
        print >>sys.stderr, 'loading stoptags %s' % _
	ht.load_stop_tags(_, 0)

    print >>sys.stderr, 'writing file merge.stoptags'
    ht.save_stop_tags('merge.stoptags')

    print >>sys.stderr, 'done!'
示例#28
0
def main():
    info('count-overlap.py', ['counting'])
    args = get_parser().parse_args()
    report_on_config(args, hashtype='hashbits')

    for infile in [args.ptfile, args.fafile]:
        check_file_status(infile, args.force)

    check_space([args.ptfile, args.fafile], args.force)

    print >>sys.stderr, 'loading k-mer presence table from', args.ptfile
    ht1 = khmer.load_hashbits(args.ptfile)
    kmer_size = ht1.ksize()

    output = open(args.report_filename, 'w')
    f_curve_obj = open(args.report_filename + '.curve', 'w')

    ht2 = khmer.new_hashbits(kmer_size, args.min_tablesize, args.n_tables)

    (n_unique, n_overlap, list_curve) = ht2.count_overlap(args.fafile, ht1)

    printout1 = """\
dataset1(pt file): %s
dataset2: %s

# of unique k-mers in dataset2: %d
# of overlap unique k-mers: %d

""" % (args.ptfile, args.fafile, n_unique, n_overlap)
    output.write(printout1)

    for i in range(100):
        to_print = str(list_curve[100 + i]) + ' ' + str(list_curve[i]) + '\n'
        f_curve_obj.write(to_print)

    print >> sys.stderr, 'wrote to: ' + args.report_filename
示例#29
0
def main():
    info('interleave-reads.py')
    args = get_parser().parse_args()

    for _ in args.infiles:
        check_input_files(_, args.force)

    check_space(args.infiles, args.force)

    s1_file = args.infiles[0]
    if len(args.infiles) == 2:
        s2_file = args.infiles[1]
    else:
        s2_file = s1_file.replace('_R1_', '_R2_')
        if s1_file == s2_file:
            print >>sys.stderr, ("ERROR: given only one filename, that "
                                 "doesn't contain _R1_. Exiting.")
            sys.exit(1)

        print >> sys.stderr, ("given only one file; "
                              "guessing that R2 file is %s" % s2_file)

    fail = False
    if not os.path.exists(s1_file):
        print >> sys.stderr, "Error! R1 file %s does not exist" % s1_file
        fail = True

    if not os.path.exists(s2_file):
        print >> sys.stderr, "Error! R2 file %s does not exist" % s2_file
        fail = True

    if fail and not args.force:
        sys.exit(1)

    print >> sys.stderr, "Interleaving:\n\t%s\n\t%s" % (s1_file, s2_file)

    counter = 0
    screed_iter_1 = screed.open(s1_file, parse_description=False)
    screed_iter_2 = screed.open(s2_file, parse_description=False)
    for read1, read2 in itertools.izip_longest(screed_iter_1, screed_iter_2):
        if read1 is None or read2 is None:
            print >>sys.stderr, ("ERROR: Input files contain different number"
                                 " of records.")
            sys.exit(1)

        if counter % 100000 == 0:
            print >> sys.stderr, '...', counter, 'pairs'
        counter += 1

        name1 = read1.name
        if not check_is_left(name1):
            name1 += '/1'
        name2 = read2.name
        if not check_is_right(name2):
            name2 += '/2'

        read1.name = name1
        read2.name = name2

        if not check_is_pair(read1, read2):
            print >>sys.stderr, "ERROR: This doesn't look like paired data! " \
                "%s %s" % (read1.name, read2.name)
            sys.exit(1)

        write_record_pair(read1, read2, args.output)

    print >> sys.stderr, 'final: interleaved %d pairs' % counter
    print >> sys.stderr, 'output written to', args.output.name
示例#30
0
def main():  # pylint: disable=too-many-branches,too-many-statements
    info('normalize-by-median.py', ['diginorm'])
    args = get_parser().parse_args()

    report_on_config(args)

    report_fp = args.report

    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savetable:
        check_space_for_hashtable(args.n_tables * args.min_tablesize,
                                  args.force)

    # list to save error files along with throwing exceptions
    if args.force:
        corrupt_files = []

    if args.loadtable:
        print 'loading k-mer counting table from', args.loadtable
        htable = khmer.load_counting_hash(args.loadtable)
    else:
        print 'making k-mer counting table'
        htable = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                         args.n_tables)

    total = 0
    discarded = 0
    input_filename = None

    for index, input_filename in enumerate(args.input_filenames):
        if args.single_output_filename != '':
            output_name = args.single_output_filename
            outfp = open(args.single_output_filename, 'a')
        else:
            output_name = os.path.basename(input_filename) + '.keep'
            outfp = open(output_name, 'w')

        total_acc = 0
        discarded_acc = 0

        try:
            total_acc, discarded_acc = normalize_by_median(
                input_filename, outfp, htable, args, report_fp)
        except IOError as err:
            handle_error(err, output_name, input_filename, args.fail_save,
                         htable)
            if not args.force:
                print >> sys.stderr, '** Exiting!'

                sys.exit(1)
            else:
                print >> sys.stderr, '*** Skipping error file, moving on...'
                corrupt_files.append(input_filename)
        else:
            if total_acc == 0 and discarded_acc == 0:
                print 'SKIPPED empty file', input_filename
            else:
                total += total_acc
                discarded += discarded_acc
                print 'DONE with {inp}; kept {kept} of {total} or {perc:2}%'\
                      .format(inp=input_filename, kept=total - discarded,
                              total=total, perc=int(100. - discarded /
                                                    float(total) * 100.))
                print 'output in', output_name

        if (args.dump_frequency > 0 and index > 0
                and index % args.dump_frequency == 0):
            print 'Backup: Saving k-mer counting file through', input_filename
            if args.savetable:
                hashname = args.savetable
                print '...saving to', hashname
            else:
                hashname = 'backup.ct'
                print 'Nothing given for savetable, saving to', hashname
            htable.save(hashname)

    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of unique k-mers: {0}'.format(
            htable.n_unique_kmers())

    if args.savetable:
        print 'Saving k-mer counting table through', input_filename
        print '...saving to', args.savetable
        htable.save(args.savetable)

    fp_rate = khmer.calc_expected_collisions(htable)
    print 'fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate)

    if args.force and len(corrupt_files) > 0:
        print >> sys.stderr, "** WARNING: Finished with errors!"
        print >> sys.stderr, "** IOErrors occurred in the following files:"
        print >> sys.stderr, "\t", " ".join(corrupt_files)

    if fp_rate > MAX_FALSE_POSITIVE_RATE:
        print >> sys.stderr, "**"
        print >> sys.stderr, ("** ERROR: the k-mer counting table is too small"
                              " for this data set. Increase tablesize/# "
                              "tables.")
        print >> sys.stderr, "**"
        print >> sys.stderr, "** Do not use these results!!"
        if not args.force:
            sys.exit(1)
示例#31
0
def main():  # pylint: disable=too-many-locals,too-many-statements
    args = sanitize_help(get_parser()).parse_args()

    report_on_config(args, graphtype='nodegraph')

    for infile in args.input_filenames:
        check_input_files(infile, args.force)

    check_space(args.input_filenames, args.force)

    print('Saving k-mer nodegraph to %s' %
          args.graphbase, file=sys.stderr)
    print('Loading kmers from sequences in %s' %
          repr(args.input_filenames), file=sys.stderr)
    print('--', file=sys.stderr)
    print('SUBSET SIZE', args.subset_size, file=sys.stderr)
    print('N THREADS', args.threads, file=sys.stderr)
    print('--', file=sys.stderr)

    # load-graph.py

    print('making nodegraph', file=sys.stderr)
    nodegraph = khmer_args.create_nodegraph(args)

    for _, filename in enumerate(args.input_filenames):
        print('consuming input', filename, file=sys.stderr)
        nodegraph.consume_fasta_and_tag(filename)

    # 0.18 is ACTUAL MAX. Do not change.
    fp_rate = \
        khmer.calc_expected_collisions(
            nodegraph, args.force, max_false_pos=.15)
    print('fp rate estimated to be %1.3f' % fp_rate, file=sys.stderr)

    # partition-graph

    # do we want to exhaustively traverse the graph?
    stop_big_traversals = args.no_big_traverse
    if stop_big_traversals:
        print('** This script brakes for lumps: ',
              'stop_big_traversals is true.', file=sys.stderr)
    else:
        print('** Traverse all the things:',
              ' stop_big_traversals is false.', file=sys.stderr)

    #
    # now, partition!
    #

    # divide the tags up into subsets
    divvy = nodegraph.divide_tags_into_subsets(int(args.subset_size))
    divvy = list(divvy)
    n_subsets = len(divvy)
    divvy.append(0)

    # build a queue of tasks:
    worker_q = queue.Queue()

    # break up the subsets into a list of worker tasks
    for _ in range(0, n_subsets):
        start = divvy[_]
        end = divvy[_ + 1]
        worker_q.put((nodegraph, _, start, end))

    print('enqueued %d subset tasks' % n_subsets, file=sys.stderr)
    open('%s.info' % args.graphbase, 'w').write('%d subsets total\n'
                                                % (n_subsets))

    if n_subsets < args.threads:
        args.threads = n_subsets

    # start threads!
    print('starting %d threads' % args.threads, file=sys.stderr)
    print('---', file=sys.stderr)

    threads = []
    for _ in range(args.threads):
        cur_thread = threading.Thread(target=worker,
                                      args=(worker_q, args.graphbase,
                                            stop_big_traversals))
        threads.append(cur_thread)
        cur_thread.start()

    print('done starting threads', file=sys.stderr)

    # wait for threads
    for _ in threads:
        _.join()

    print('---', file=sys.stderr)
    print('done making subsets! see %s.subset.*.pmap' %
          (args.graphbase,), file=sys.stderr)

    # merge-partitions

    pmap_files = glob.glob(args.graphbase + '.subset.*.pmap')

    print('loading %d pmap files (first one: %s)' %
          (len(pmap_files), pmap_files[0]), file=sys.stderr)

    nodegraph = khmer.Nodegraph(args.ksize, 1, 1)

    for pmap_file in pmap_files:
        print('merging', pmap_file, file=sys.stderr)
        nodegraph.merge_subset_from_disk(pmap_file)

    if args.remove_subsets:
        print('removing pmap files', file=sys.stderr)
        for pmap_file in pmap_files:
            os.unlink(pmap_file)

    # annotate-partitions

    for infile in args.input_filenames:
        print('outputting partitions for', infile, file=sys.stderr)
        outfile = os.path.basename(infile) + '.part'
        part_count = nodegraph.output_partitions(infile, outfile)
        print('output %d partitions for %s' % (
            part_count, infile), file=sys.stderr)
        print('partitions are in', outfile, file=sys.stderr)
def main():
    info('split-paired-reads.py')
    args = sanitize_help(get_parser()).parse_args()

    infile = args.infile

    filenames = [infile]
    check_input_files(infile, args.force)
    check_space(filenames, args.force)

    basename = os.path.basename(infile)

    # decide where to put output files - specific directory? or just default?
    if infile in ('/dev/stdin', '-'):
        if not (args.output_first and args.output_second):
            print(
                "Accepting input from stdin; "
                "output filenames must be provided.",
                file=sys.stderr)
            sys.exit(1)
    elif args.output_directory:
        if not os.path.exists(args.output_directory):
            os.makedirs(args.output_directory)
        out1 = os.path.join(args.output_directory, basename + '.1')
        out2 = os.path.join(args.output_directory, basename + '.2')
    else:
        out1 = basename + '.1'
        out2 = basename + '.2'

    # OVERRIDE output file locations with -1, -2
    if args.output_first:
        fp_out1 = get_file_writer(args.output_first, args.gzip, args.bzip)
        out1 = fp_out1.name
    else:
        # Use default filename created above
        fp_out1 = get_file_writer(open(out1, 'wb'), args.gzip, args.bzip)
    if args.output_second:
        fp_out2 = get_file_writer(args.output_second, args.gzip, args.bzip)
        out2 = fp_out2.name
    else:
        # Use default filename created above
        fp_out2 = get_file_writer(open(out2, 'wb'), args.gzip, args.bzip)

    # put orphaned reads here, if -0!
    if args.output_orphaned:
        fp_out0 = get_file_writer(args.output_orphaned, args.gzip, args.bzip)
        out0 = describe_file_handle(args.output_orphaned)

    counter1 = 0
    counter2 = 0
    counter3 = 0
    index = None

    screed_iter = screed.open(infile)

    # walk through all the reads in broken-paired mode.
    paired_iter = broken_paired_reader(screed_iter,
                                       require_paired=not args.output_orphaned)

    try:
        for index, is_pair, record1, record2 in paired_iter:
            if index % 10000 == 0:
                print('...', index, file=sys.stderr)

            if is_pair:
                write_record(record1, fp_out1)
                counter1 += 1
                write_record(record2, fp_out2)
                counter2 += 1
            elif args.output_orphaned:
                write_record(record1, fp_out0)
                counter3 += 1
    except UnpairedReadsError as e:
        print("Unpaired reads found starting at {name}; exiting".format(
            name=e.r1.name),
              file=sys.stderr)
        sys.exit(1)

    print("DONE; split %d sequences (%d left, %d right, %d orphans)" %
          (counter1 + counter2, counter1, counter2, counter3),
          file=sys.stderr)
    print("/1 reads in %s" % out1, file=sys.stderr)
    print("/2 reads in %s" % out2, file=sys.stderr)
    if args.output_orphaned:
        print("orphans in %s" % out0, file=sys.stderr)
示例#33
0
def main():
    args = sanitize_help(get_parser()).parse_args()
    if not args.quiet:
        info('filter-abund-single.py', ['counting', 'SeqAn'])

    configure_logging(args.quiet)
    check_input_files(args.datafile, args.force)
    check_space([args.datafile], args.force)

    if args.savegraph:
        tablesize = calculate_graphsize(args, 'countgraph')
        check_space_for_graph(args.savegraph, tablesize, args.force)

    report_on_config(args)

    log_info('making countgraph')
    graph = khmer_args.create_countgraph(args)

    # first, load reads into graph
    rparser = khmer.ReadParser(args.datafile)
    threads = []
    log_info('consuming input, round 1 -- {datafile}', datafile=args.datafile)
    for _ in range(args.threads):
        cur_thread = \
            threading.Thread(
                target=graph.consume_fasta_with_reads_parser,
                args=(rparser, )
            )
        threads.append(cur_thread)
        cur_thread.start()

    for _ in threads:
        _.join()

    log_info('Total number of unique k-mers: {nk}', nk=graph.n_unique_kmers())

    fp_rate = khmer.calc_expected_collisions(graph, args.force)
    log_info('fp rate estimated to be {fpr:1.3f}', fpr=fp_rate)

    # the filtering loop
    log_info('filtering {datafile}', datafile=args.datafile)
    if args.outfile is None:
        outfile = os.path.basename(args.datafile) + '.abundfilt'
    else:
        outfile = args.outfile
    outfp = open(outfile, 'wb')
    outfp = get_file_writer(outfp, args.gzip, args.bzip)

    screed_iter = screed.open(args.datafile)
    paired_iter = broken_paired_reader(screed_iter, min_length=graph.ksize(),
                                       force_single=True)

    for n, is_pair, read1, read2 in paired_iter:
        assert not is_pair
        assert read2 is None

        trimmed_record, _ = trim_record(graph, read1, args.cutoff,
                                        args.variable_coverage,
                                        args.normalize_to)
        if trimmed_record:
            print((trimmed_record,))
            write_record(trimmed_record, outfp)

    log_info('output in {outfile}', outfile=outfile)

    if args.savegraph:
        log_info('Saving k-mer countgraph filename {graph}',
                 graph=args.savegraph)
        graph.save(args.savegraph)
示例#34
0
def main():  # pylint: disable=too-many-branches,too-many-statements
    info('saturate-by-median.py', ['diginorm'])
    args = get_parser().parse_args()

    report_on_config(args)

    report_fp = args.report
    report_frequency = args.report_frequency

    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, False)
    if args.savetable:
        check_space_for_hashtable(args.n_tables * args.min_tablesize, False)

    # list to save error files along with throwing exceptions
    if args.force:
        corrupt_files = []

    if args.loadtable:
        print 'loading k-mer counting table from', args.loadtable
        htable = khmer.load_counting_hash(args.loadtable)
    else:
        print 'making k-mer counting table'
        htable = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                         args.n_tables)

    total = 0
    discarded = 0

    for index, input_filename in enumerate(args.input_filenames):
        total_acc = 0
        discarded_acc = 0

        try:
            total_acc, discarded_acc = normalize_by_median(
                input_filename, htable, args, report_fp, report_frequency)
        except IOError as err:
            handle_error(err, input_filename)
            if not args.force:
                print >> sys.stderr, '** Exiting!'
                sys.exit(1)
            else:
                print >> sys.stderr, '*** Skipping error file, moving on...'
                corrupt_files.append(input_filename)
        else:
            if total_acc == 0 and discarded_acc == 0:
                print 'SKIPPED empty file', input_filename
            else:
                total += total_acc
                discarded += discarded_acc
                print 'DONE with {inp}; kept {kept} of {total} or {perc:2}%'\
                    .format(inp=input_filename,
                            kept=total - discarded, total=total,
                            perc=int(100. - discarded / float(total) * 100.))

    if args.savetable:
        print 'Saving k-mer counting table through', input_filename
        print '...saving to', args.savetable
        htable.save(args.savetable)

    fp_rate = khmer.calc_expected_collisions(htable)
    print 'fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate)

    if args.force and len(corrupt_files) > 0:
        print >> sys.stderr, "** WARNING: Finished with errors!"
        print >> sys.stderr, "** IOErrors occurred in the following files:"
        print >> sys.stderr, "\t", " ".join(corrupt_files)

    if fp_rate > MAX_FALSE_POSITIVE_RATE:
        print >> sys.stderr, "**"
        print >> sys.stderr, ("** ERROR: the k-mer counting table is too small"
                              " for this data set.  Increase tablesize/# "
                              "tables.")
        print >> sys.stderr, "**"
        print >> sys.stderr, "** Do not use these results!!"
        sys.exit(1)
示例#35
0
def main():
    args = sanitize_help(get_parser()).parse_args()
    if not args.quiet:
        info('filter-abund-single.py', ['counting', 'SeqAn'])

    configure_logging(args.quiet)
    check_input_files(args.datafile, args.force)
    check_space([args.datafile], args.force)

    if args.savegraph:
        tablesize = calculate_graphsize(args, 'countgraph')
        check_space_for_graph(args.savegraph, tablesize, args.force)

    report_on_config(args)

    log_info('making countgraph')
    graph = khmer_args.create_countgraph(args)

    # first, load reads into graph
    rparser = khmer.ReadParser(args.datafile)
    threads = []
    log_info('consuming input, round 1 -- {datafile}', datafile=args.datafile)
    for _ in range(args.threads):
        cur_thread = \
            threading.Thread(
                target=graph.consume_fasta_with_reads_parser,
                args=(rparser, )
            )
        threads.append(cur_thread)
        cur_thread.start()

    for _ in threads:
        _.join()

    log_info('Total number of unique k-mers: {nk}', nk=graph.n_unique_kmers())

    fp_rate = khmer.calc_expected_collisions(graph, args.force)
    log_info('fp rate estimated to be {fpr:1.3f}', fpr=fp_rate)

    # now, trim.

    # the filtering function.
    def process_fn(record):
        name = record.name
        seq = record.sequence
        seqN = seq.replace('N', 'A')

        _, trim_at = graph.trim_on_abundance(seqN, args.cutoff)

        if trim_at >= args.ksize:
            # be sure to not to change the 'N's in the trimmed sequence -
            # so, return 'seq' and not 'seqN'.
            return name, seq[:trim_at]

        return None, None

    # the filtering loop
    log_info('filtering {datafile}', datafile=args.datafile)
    if args.outfile is None:
        outfile = os.path.basename(args.datafile) + '.abundfilt'
    else:
        outfile = args.outfile
    outfp = open(outfile, 'wb')
    outfp = get_file_writer(outfp, args.gzip, args.bzip)

    tsp = ThreadedSequenceProcessor(process_fn, verbose=not args.quiet)
    tsp.start(verbose_loader(args.datafile), outfp)

    log_info('output in {outfile}', outfile=outfile)

    if args.savegraph:
        log_info('Saving k-mer countgraph filename {graph}',
                 graph=args.savegraph)
        graph.save(args.savegraph)
示例#36
0
def main():

    info('collect-reads.py', ['counting'])
    args = get_parser().parse_args()
    report_on_config(args)

    base = args.output_countingtable_filename
    filenames = args.input_sequence_filename

    for name in args.input_sequence_filename:
        check_input_files(name, False)

    check_space(args.input_sequence_filename, False)
    check_space_for_hashtable(args.n_tables * args.min_tablesize, False)

    print 'Saving k-mer counting table to %s' % base
    print 'Loading sequences from %s' % repr(filenames)
    if args.output:
        print 'Outputting sequences to', args.output

    print 'making k-mer counting table'
    htable = khmer.new_counting_hash(args.ksize, args.min_tablesize)
    htable.set_use_bigcount(args.bigcount)

    total_coverage = 0.
    n = 0

    for index, filename in enumerate(filenames):
        for record in screed.open(filename):
            seq = record.sequence.upper()
            if 'N' in seq:
                seq = seq.replace('N', 'G')

            try:
                med, _, _ = htable.get_median_count(seq)
            except ValueError:
                continue

            total_coverage += med
            n += 1

            if total_coverage / float(n) > args.coverage:
                print 'reached target average coverage:', \
                      total_coverage / float(n)
                break

            htable.consume(seq)
            if args.output:
                args.output.write(output_single(record))

            if n % 100000 == 0:
                print '...', index, filename, n, total_coverage / float(n)

        if total_coverage / float(n) > args.coverage:
            break

    print 'Collected %d reads' % (n, )

    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of k-mers: {0}'.format(
            htable.n_occupied())

    print 'saving', base
    htable.save(base)

    info_fp = open(base + '.info', 'w')
    info_fp.write('through end: %s\n' % filenames[-1])

    # Change 0.2 only if you really grok it.  HINT: You don't.
    fp_rate = khmer.calc_expected_collisions(htable,
                                             args.force,
                                             max_false_pos=.2)
    print 'fp rate estimated to be %1.3f' % fp_rate
    print >> info_fp, 'fp rate estimated to be %1.3f' % fp_rate

    print 'DONE.'
示例#37
0
def main():  # pylint: disable=too-many-locals,too-many-branches
    info('abundance-dist-single.py', ['counting', 'SeqAn'])
    args = get_parser().parse_args()
    report_on_config(args)

    check_file_status(args.input_sequence_filename, args.force)
    check_space([args.input_sequence_filename], args.force)
    if args.savetable:
        check_space_for_hashtable(args.n_tables * args.min_tablesize,
                                  args.force)

    if (not args.squash_output and
            os.path.exists(args.output_histogram_filename)):
        print >> sys.stderr, 'ERROR: %s exists; not squashing.' % \
            args.output_histogram_filename
        sys.exit(1)
    else:
        hist_fp = open(args.output_histogram_filename, 'w')

    print >>sys.stderr, 'making k-mer counting table'
    counting_hash = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                            args.n_tables)
    counting_hash.set_use_bigcount(args.bigcount)

    print >> sys.stderr, 'building k-mer tracking table'
    tracking = khmer.new_hashbits(counting_hash.ksize(), args.min_tablesize,
                                  args.n_tables)

    print >>sys.stderr, 'kmer_size:', counting_hash.ksize()
    print >>sys.stderr, 'k-mer counting table sizes:', \
        counting_hash.hashsizes()
    print >>sys.stderr, 'outputting to', args.output_histogram_filename

    # start loading
    rparser = khmer.ReadParser(args.input_sequence_filename)
    threads = []
    print >>sys.stderr, 'consuming input, round 1 --', \
        args.input_sequence_filename
    for _ in xrange(args.threads):
        thread = \
            threading.Thread(
                target=counting_hash.consume_fasta_with_reads_parser,
                args=(rparser, )
            )
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()

    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of unique k-mers: {0}'.format(
            counting_hash.n_unique_kmers())

    abundance_lists = []

    def __do_abundance_dist__(read_parser):
        abundances = counting_hash.abundance_distribution_with_reads_parser(
            read_parser, tracking)
        abundance_lists.append(abundances)

    print >>sys.stderr, 'preparing hist from %s...' % \
        args.input_sequence_filename
    rparser = khmer.ReadParser(args.input_sequence_filename)
    threads = []
    print >>sys.stderr, 'consuming input, round 2 --', \
        args.input_sequence_filename
    for _ in xrange(args.threads):
        thread = \
            threading.Thread(
                target=__do_abundance_dist__,
                args=(rparser, )
            )
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()

    assert len(abundance_lists) == args.threads, len(abundance_lists)
    abundance = {}
    for abundance_list in abundance_lists:
        for i, count in enumerate(abundance_list):
            abundance[i] = abundance.get(i, 0) + count

    total = sum(abundance.values())

    if 0 == total:
        print >> sys.stderr, \
            "ERROR: abundance distribution is uniformly zero; " \
            "nothing to report."
        print >> sys.stderr, "\tPlease verify that the input files are valid."
        sys.exit(1)

    sofar = 0
    for _, i in sorted(abundance.items()):
        if i == 0 and not args.output_zero:
            continue

        sofar += i
        frac = sofar / float(total)

        print >> hist_fp, _, i, sofar, round(frac, 3)

        if sofar == total:
            break

    if args.savetable:
        print >>sys.stderr, 'Saving k-mer counting table ', args.savetable
        print >>sys.stderr, '...saving to', args.savetable
        counting_hash.save(args.savetable)

    print >> sys.stderr, 'wrote to: ' + args.output_histogram_filename
示例#38
0
def main():
    parser = get_parser()
    parser.epilog = parser.epilog.replace(
        ":doc:`partitioning-big-data`",
        "http://khmer.readthedocs.io/en/stable/user/"
        "partitioning-big-data.html")
    args = sanitize_help(parser).parse_args()

    graphbase = args.graphbase

    # @RamRS: This might need some more work
    infiles = [graphbase, graphbase + '.tagset']
    if os.path.exists(graphbase + '.stoptags'):
        infiles.append(graphbase + '.stoptags')
    for _ in infiles:
        check_input_files(_, args.force)

    check_space(infiles, args.force)

    print('loading k-mer nodegraph %s' % graphbase, file=sys.stderr)
    graph = khmer.load_nodegraph(graphbase)

    print('loading tagset %s.tagset...' % graphbase, file=sys.stderr)
    graph.load_tagset(graphbase + '.tagset')

    initial_stoptags = False  # @CTB regularize with make-initial
    if os.path.exists(graphbase + '.stoptags'):
        print('loading stoptags %s.stoptags' % graphbase, file=sys.stderr)
        graph.load_stop_tags(graphbase + '.stoptags')
        initial_stoptags = True

    pmap_files = glob.glob(args.graphbase + '.subset.*.pmap')

    print('loading %d pmap files (first one: %s)' %
          (len(pmap_files), pmap_files[0]),
          file=sys.stderr)
    print('---', file=sys.stderr)
    print('output stoptags will be in',
          graphbase + '.stoptags',
          file=sys.stderr)
    if initial_stoptags:
        print('(these output stoptags will include the already-loaded set)',
              file=sys.stderr)
    print('---', file=sys.stderr)

    # create countgraph
    ksize = graph.ksize()
    counting = khmer_args.create_countgraph(args, ksize=ksize)

    # load & merge
    for index, subset_file in enumerate(pmap_files):
        print('<-', subset_file, file=sys.stderr)
        subset = graph.load_subset_partitionmap(subset_file)

        print('** repartitioning subset... %s' % subset_file, file=sys.stderr)
        graph.repartition_largest_partition(subset, counting,
                                            EXCURSION_DISTANCE,
                                            EXCURSION_KMER_THRESHOLD,
                                            EXCURSION_KMER_COUNT_THRESHOLD)

        print('** merging subset... %s' % subset_file, file=sys.stderr)
        graph.merge_subset(subset)

        print('** repartitioning, round 2... %s' % subset_file,
              file=sys.stderr)
        size = graph.repartition_largest_partition(
            None, counting, EXCURSION_DISTANCE, EXCURSION_KMER_THRESHOLD,
            EXCURSION_KMER_COUNT_THRESHOLD)

        print('** repartitioned size:', size, file=sys.stderr)

        print('saving stoptags binary', file=sys.stderr)
        graph.save_stop_tags(graphbase + '.stoptags')
        os.rename(subset_file, subset_file + '.processed')
        print('(%d of %d)\n' % (index, len(pmap_files)), file=sys.stderr)

    print('done!', file=sys.stderr)
示例#39
0
def main():
    args = sanitize_help(get_parser()).parse_args()

    distfilename = args.prefix + '.dist'

    for infile in args.part_filenames:
        check_input_files(infile, args.force)

    check_space(args.part_filenames, args.force)

    print('---', file=sys.stderr)
    print('reading partitioned files:',
          repr(args.part_filenames),
          file=sys.stderr)
    if args.output_groups:
        print('outputting to files named "%s.groupN.fa"' % args.prefix,
              file=sys.stderr)
        print('min reads to keep a partition:',
              args.min_part_size,
              file=sys.stderr)
        print('max size of a group file:', args.max_size, file=sys.stderr)
    else:
        print('NOT outputting groups! Beware!', file=sys.stderr)

    if args.output_unassigned:
        print('outputting unassigned reads to "%s.unassigned.fa"' %
              args.prefix,
              file=sys.stderr)
    print('partition size distribution will go to %s' % distfilename,
          file=sys.stderr)
    print('---', file=sys.stderr)

    #

    suffix = None
    is_fastq = None

    with PartitionedReader(args.part_filenames, True, True) as reader:
        for read, _ in reader:
            if is_fastq is None:
                is_fastq = hasattr(read, 'quality')
            else:
                assert hasattr(read, 'quality') == is_fastq,\
                    "Input files must have consistent format."

    if is_fastq:
        suffix = "fq"
    else:
        suffix = "fa"

    # remember folks, generators exhaust themseleves
    extractor = PartitionExtractor(args.part_filenames, args.min_part_size,
                                   args.max_size)

    if args.output_unassigned:
        ofile = open('%s.unassigned.%s' % (args.prefix, suffix), 'wb')
        unassigned_fp = get_file_writer(ofile, args.gzip, args.bzip)
        extractor.process_unassigned(unassigned_fp)
        unassigned_fp.close()
    else:
        extractor.process_unassigned()

    extractor.output_histogram(distfilename)

    if not args.output_groups:
        sys.exit(0)

    extractor.develop_groups()

    print('%d groups' % extractor.group_n, file=sys.stderr)
    if extractor.group_n == 0:
        print('nothing to output; exiting!', file=sys.stderr)
        return

    # open a bunch of output files for the different groups
    group_fps = {}
    for index in range(extractor.group_n):
        fname = '%s.group%04d.%s' % (args.prefix, index, suffix)
        group_fp = get_file_writer(open(fname, 'wb'), args.gzip, args.bzip)
        group_fps[index] = group_fp

    # write 'em all out!
    # refresh the generator
    read_generator = PartitionExtractor.ReadGroupGenerator(extractor)

    with PartitionedReader(args.part_filenames) as reader:
        for read, group_n in read_generator(reader):
            outfp = group_fps[group_n]
            write_record(read, outfp)

    print('---', file=sys.stderr)
    print('Of %d total seqs,' % read_generator.total_seqs, file=sys.stderr)
    print('extracted %d partitioned seqs into group files,' %
          read_generator.part_seqs,
          file=sys.stderr)
    print('discarded %d sequences from small partitions (see -m),' %
          read_generator.toosmall_parts,
          file=sys.stderr)
    print('and found %d unpartitioned sequences (see -U).' %
          extractor.n_unassigned,
          file=sys.stderr)
    print('', file=sys.stderr)
    print('Created %d group files named %s.groupXXXX.%s' %
          (len(group_fps), args.prefix, suffix),
          file=sys.stderr)
示例#40
0
def main():
    info('sweep-reads-buffered.py', ['sweep'])
    parser = get_parser()
    args = parser.parse_args()

    if args.min_tablesize < MIN_HSIZE:
        args.min_tablesize = MIN_HSIZE
    if args.ksize < MIN_KSIZE:
        args.ksize = MIN_KSIZE

    report_on_config(args, hashtype='hashbits')

    K = args.ksize
    HT_SIZE = args.min_tablesize
    N_HT = args.n_tables

    traversal_range = args.traversal_range
    input_fastp = args.input_fastp

    if not args.outdir:
        outdir = os.path.dirname(input_fastp)
    else:
        outdir = args.outdir

    max_buffers = args.max_buffers
    output_pref = args.output_prefix
    buf_size = args.buffer_size
    max_reads = args.max_reads

    check_input_files(args.input_fastp, args.force)
    check_valid_file_exists(args.input_files)
    all_input_files = [input_fastp]
    all_input_files.extend(args.input_files)

    # Check disk space availability
    check_space(all_input_files, args.force)

    # figure out input file type (FA/FQ) -- based on first file
    ix = iter(screed.open(args.input_files[0]))
    record = ix.next()
    del ix

    extension = 'fa'
    if hasattr(record, 'quality'):  # fastq!
        extension = 'fq'

    output_buffer = ReadBufferManager(max_buffers, max_reads, buf_size,
                                      output_pref, outdir, extension)

    # consume the partitioned fasta with which to label the graph
    ht = khmer.LabelHash(K, HT_SIZE, N_HT)
    try:
        print >> sys.stderr, 'consuming input sequences...'
        if args.label_by_pid:
            print >> sys.stderr, '...labeling by partition id (pid)'
            ht.consume_partitioned_fasta_and_tag_with_labels(input_fastp)
        elif args.label_by_seq:
            print >> sys.stderr, '...labeling by sequence'
            for n, record in enumerate(screed.open(input_fastp)):
                if n % 50000 == 0:
                    print >>sys.stderr, \
                        '...consumed {n} sequences...'.format(n=n)
                ht.consume_sequence_and_tag_with_labels(record.sequence, n)
        else:
            print >>sys.stderr, \
                '...labeling to create groups of size {s}'.format(
                    s=args.group_size)
            label = -1
            g = 0
            try:
                outfp = open(
                    '{pref}_base_{g}.{ext}'.format(pref=output_pref,
                                                   g=g,
                                                   ext=extension), 'wb')
                for n, record in enumerate(screed.open(input_fastp)):
                    if n % args.group_size == 0:
                        label += 1
                        if label > g:
                            g = label
                            outfp = open(
                                '{pref}_base_{g}.{ext}'.format(
                                    pref=output_pref, g=g, ext=extension),
                                'wb')
                    if n % 50000 == 0:
                        print >>sys.stderr, \
                            '...consumed {n} sequences...'.format(n=n)
                    ht.consume_sequence_and_tag_with_labels(
                        record.sequence, label)

                    write_record(record, outfp)

            except IOError as e:
                print >> sys.stderr, '!! ERROR !!', e
                print >> sys.stderr, '...error splitting input. exiting...'

    except IOError as e:
        print >> sys.stderr, '!! ERROR: !!', e
        print >> sys.stderr, '...error consuming \
                            {i}. exiting...'.format(i=input_fastp)

    print >> sys.stderr, 'done consuming input sequence. \
                        added {t} tags and {l} \
                        labels...'.format(t=ht.n_tags(), l=ht.n_labels())

    label_dict = defaultdict(int)
    label_number_dist = []

    n_orphaned = 0
    n_labeled = 0
    n_mlabeled = 0

    total_t = time.clock()
    start_t = time.clock()
    for read_file in args.input_files:
        print >> sys.stderr, '** sweeping {read_file} for labels...'.format(
            read_file=read_file)
        file_t = 0.0
        try:
            read_fp = screed.open(read_file)
        except IOError as error:
            print >> sys.stderr, '!! ERROR: !!', error
            print >> sys.stderr, '*** Could not open {fn}, skipping...'.format(
                fn=read_file)
        else:
            for _, record in enumerate(read_fp):
                if _ % 50000 == 0:
                    end_t = time.clock()
                    batch_t = end_t - start_t
                    file_t += batch_t
                    print >>sys.stderr, '\tswept {n} reads [{nc} labeled, \
                                         {no} orphaned] \
                                        ** {sec}s ({sect}s total)' \
                                        .format(n=_, nc=n_labeled,
                                                no=n_orphaned,
                                                sec=batch_t, sect=file_t)
                    start_t = time.clock()
                seq = record.sequence
                name = record.name
                try:
                    labels = ht.sweep_label_neighborhood(seq, traversal_range)
                except ValueError as e:
                    pass
                else:
                    if hasattr(record, 'quality'):
                        seq_str = fmt_fastq(name, seq, record.quality, labels)
                    else:
                        seq_str = fmt_fasta(name, seq, labels)
                    label_number_dist.append(len(labels))
                    if labels:
                        n_labeled += 1
                        if len(labels) > 1:
                            output_buffer.queue(seq_str, 'multi')
                            n_mlabeled += 1
                            label_dict['multi'] += 1
                        else:
                            output_buffer.queue(seq_str, labels[0])
                            label_dict[labels[0]] += 1
                    else:
                        n_orphaned += 1
                        output_buffer.queue(seq_str, 'orphaned')
                        label_dict['orphaned'] += 1
            print >> sys.stderr, '** End of file {fn}...'.format(fn=read_file)
            output_buffer.flush_all()
            read_fp.close()

    # gotta output anything left in the buffers at the end!
    print >> sys.stderr, '** End of run...'
    output_buffer.flush_all()
    total_t = time.clock() - total_t

    if output_buffer.num_write_errors > 0 or output_buffer.num_file_errors > 0:
        print >> sys.stderr, '! WARNING: Sweep finished with errors !'
        print >> sys.stderr, '** {writee} reads not written'.format(
            writee=output_buffer.num_write_errors)
        print >> sys.stderr, '** {filee} errors opening files'.format(
            filee=output_buffer.num_file_errors)

    print >> sys.stderr, 'swept {n_reads} for labels...'.format(
        n_reads=n_labeled + n_orphaned)
    print >> sys.stderr, '...with {nc} labeled and {no} orphaned'.format(
        nc=n_labeled, no=n_orphaned)
    print >> sys.stderr, '...and {nmc} multilabeled'.format(nmc=n_mlabeled)

    print >> sys.stderr, '** outputting label number distribution...'
    fn = os.path.join(outdir, '{pref}.dist.txt'.format(pref=output_pref))
    with open(fn, 'wb') as outfp:
        for nc in label_number_dist:
            outfp.write('{nc}\n'.format(nc=nc))

    fn = os.path.join(outdir, '{pref}.counts.csv'.format(pref=output_pref))
    print >> sys.stderr, '** outputting label read counts...'
    with open(fn, 'wb') as outfp:
        for k in label_dict:
            outfp.write('{l},{c}\n'.format(l=k, c=label_dict[k]))
示例#41
0
def main():
    info('partition-graph.py', ['graph'])
    args = get_parser().parse_args()
    basename = args.basename

    filenames = [basename + '.pt', basename + '.tagset']
    for _ in filenames:
        check_input_files(_, args.force)

    check_space(filenames, args.force)

    print >> sys.stderr, '--'
    print >> sys.stderr, 'SUBSET SIZE', args.subset_size
    print >> sys.stderr, 'N THREADS', args.threads
    if args.stoptags:
        print >> sys.stderr, 'stoptag file:', args.stoptags
    print >> sys.stderr, '--'

    print >> sys.stderr, 'loading ht %s.pt' % basename
    htable = khmer.load_hashbits(basename + '.pt')
    htable.load_tagset(basename + '.tagset')

    # do we want to load stop tags, and do they exist?
    if args.stoptags:
        print >> sys.stderr, 'loading stoptags from', args.stoptags
        htable.load_stop_tags(args.stoptags)

    # do we want to exhaustively traverse the graph?
    stop_big_traversals = args.no_big_traverse
    if stop_big_traversals:
        print >>sys.stderr, '** This script brakes for lumps:', \
                            ' stop_big_traversals is true.'
    else:
        print >>sys.stderr, '** Traverse all the things:', \
                            ' stop_big_traversals is false.'

    #
    # now, partition!
    #

    # divide the tags up into subsets
    divvy = htable.divide_tags_into_subsets(int(args.subset_size))
    n_subsets = len(divvy)
    divvy.append(0)

    # build a queue of tasks:
    worker_q = Queue.Queue()

    # break up the subsets into a list of worker tasks
    for _ in range(0, n_subsets):
        start = divvy[_]
        end = divvy[_ + 1]
        worker_q.put((htable, _, start, end))

    print >> sys.stderr, 'enqueued %d subset tasks' % n_subsets
    open('%s.info' % basename, 'w').write('%d subsets total\n' % (n_subsets))

    n_threads = args.threads
    if n_subsets < n_threads:
        n_threads = n_subsets

    # start threads!
    print >> sys.stderr, 'starting %d threads' % n_threads
    print >> sys.stderr, '---'

    threads = []
    for _ in range(n_threads):
        cur_thrd = threading.Thread(target=worker,
                                    args=(worker_q, basename,
                                          stop_big_traversals))
        threads.append(cur_thrd)
        cur_thrd.start()

    print >> sys.stderr, 'done starting threads'

    # wait for threads
    for _ in threads:
        _.join()

    print >> sys.stderr, '---'
    print >>sys.stderr, 'done making subsets! see %s.subset.*.pmap' % \
        (basename,)
示例#42
0
def main():  # pylint: disable=too-many-locals,too-many-branches
    info('extract-partitions.py', ['graph'])
    args = get_parser().parse_args()

    distfilename = args.prefix + '.dist'

    n_unassigned = 0

    for infile in args.part_filenames:
        check_file_status(infile, args.force)

    check_space(args.part_filenames, args.force)

    print >> sys.stderr, '---'
    print >> sys.stderr, 'reading partitioned files:', repr(
        args.part_filenames)
    if args.output_groups:
        print >>sys.stderr, 'outputting to files named "%s.groupN.fa"' % \
            args.prefix
        print >>sys.stderr, 'min reads to keep a partition:', \
            args.min_part_size
        print >> sys.stderr, 'max size of a group file:', args.max_size
    else:
        print >> sys.stderr, 'NOT outputting groups! Beware!'

    if args.output_unassigned:
        print >>sys.stderr, \
            'outputting unassigned reads to "%s.unassigned.fa"' % \
            args.prefix
    print >>sys.stderr, 'partition size distribution will go to %s' \
        % distfilename
    print >> sys.stderr, '---'

    #

    suffix = 'fa'
    is_fastq = False

    for index, read, pid in read_partition_file(args.part_filenames[0]):
        if hasattr(read, 'quality'):
            suffix = 'fq'
            is_fastq = True
        break

    for filename in args.part_filenames:
        for index, read, pid in read_partition_file(filename):
            if is_fastq:
                assert hasattr(read, 'quality'), \
                    "all input files must be FASTQ if the first one is"
            else:
                assert not hasattr(read, 'quality'), \
                    "all input files must be FASTA if the first one is"

            break

    if args.output_unassigned:
        unassigned_fp = open('%s.unassigned.%s' % (args.prefix, suffix), 'w')

    count = {}
    for filename in args.part_filenames:
        for index, read, pid in read_partition_file(filename):
            if index % 100000 == 0:
                print >> sys.stderr, '...', index

            count[pid] = count.get(pid, 0) + 1

            if pid == 0:
                n_unassigned += 1
                if args.output_unassigned:
                    write_record(read, unassigned_fp)

    if args.output_unassigned:
        unassigned_fp.close()

    if 0 in count:  # eliminate unpartitioned sequences
        del count[0]

    # develop histogram of partition sizes
    dist = {}
    for pid, size in count.items():
        dist[size] = dist.get(size, 0) + 1

    # output histogram
    distfp = open(distfilename, 'w')

    total = 0
    wtotal = 0
    for counter, index in sorted(dist.items()):
        total += index
        wtotal += counter * index
        distfp.write('%d %d %d %d\n' % (counter, index, total, wtotal))
    distfp.close()

    if not args.output_groups:
        sys.exit(0)

    # sort groups by size
    divvy = sorted(count.items(), key=lambda y: y[1])
    divvy = [y for y in divvy if y[1] > args.min_part_size]

    # divvy up into different groups, based on having max_size sequences
    # in each group.
    total = 0
    group = set()
    group_n = 0
    group_d = {}
    for partition_id, n_reads in divvy:
        group.add(partition_id)
        total += n_reads

        if total > args.max_size:
            for partition_id in group:
                group_d[partition_id] = group_n
                # print 'group_d', partition_id, group_n

            group_n += 1
            group = set()
            total = 0

    if group:
        for partition_id in group:
            group_d[partition_id] = group_n
            # print 'group_d', partition_id, group_n
        group_n += 1

    print >> sys.stderr, '%d groups' % group_n
    if group_n == 0:
        print >> sys.stderr, 'nothing to output; exiting!'
        return

    # open a bunch of output files for the different groups
    group_fps = {}
    for _ in range(group_n):
        group_fp = open('%s.group%04d.%s' % (args.prefix, _, suffix), 'w')
        group_fps[_] = group_fp

    # write 'em all out!

    total_seqs = 0
    part_seqs = 0
    toosmall_parts = 0
    for filename in args.part_filenames:
        for index, read, partition_id in read_partition_file(filename):
            total_seqs += 1
            if index % 100000 == 0:
                print >> sys.stderr, '...x2', index

            if partition_id == 0:
                continue

            try:
                group_n = group_d[partition_id]
            except KeyError:
                assert count[partition_id] <= args.min_part_size
                toosmall_parts += 1
                continue

            outfp = group_fps[group_n]

            write_record(read, outfp)
            part_seqs += 1

    print >> sys.stderr, '---'
    print >> sys.stderr, 'Of %d total seqs,' % total_seqs
    print >>sys.stderr, 'extracted %d partitioned seqs into group files,' % \
        part_seqs
    print >>sys.stderr, \
        'discarded %d sequences from small partitions (see -m),' % \
        toosmall_parts
    print >>sys.stderr, 'and found %d unpartitioned sequences (see -U).' % \
        n_unassigned
    print >> sys.stderr, ''
    print >>sys.stderr, 'Created %d group files named %s.groupXXXX.%s' % \
        (len(group_fps),
         args.prefix,
         suffix)
示例#43
0
def main():  # pylint: disable=too-many-branches,too-many-statements
    parser = sanitize_help(get_parser())
    args = parser.parse_args()

    if not args.quiet:
        info('normalize-by-median.py', ['diginorm'])

    configure_logging(args.quiet)
    report_on_config(args)

    report_fp = args.report
    force_single = args.force_single

    # check for similar filenames
    # if we're using a single output file only check for identical filenames
    # otherwise, check for identical BASE names as well.
    filenames = []
    basenames = []
    for pathfilename in args.input_filenames:
        filenames.append(pathfilename)
        if args.single_output_file:
            continue  # nothing more to worry about

        basename = os.path.basename(pathfilename)
        if basename in basenames:
            log_error('ERROR: Duplicate filename--Cannot handle this!')
            log_error('** Exiting!')
            sys.exit(1)

        basenames.append(basename)

    # check that files exist and there is sufficient output disk space.
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savegraph:
        graphsize = calculate_graphsize(args, 'countgraph')
        check_space_for_graph(args.savegraph, graphsize, args.force)

    # load or create counting table.
    if args.loadgraph:
        log_info('loading k-mer countgraph from {graph}', graph=args.loadgraph)
        countgraph = khmer.load_countgraph(args.loadgraph)
    else:
        log_info('making countgraph')
        countgraph = khmer_args.create_countgraph(args)

    # create an object to handle diginorm of all files
    norm = Normalizer(args.cutoff, countgraph)
    with_diagnostics = WithDiagnostics(norm, report_fp, args.report_frequency)

    # make a list of all filenames and if they're paired or not;
    # if we don't know if they're paired, default to allowing but not
    # forcing pairing.
    files = []
    for element in filenames:
        files.append([element, args.paired])
    if args.unpaired_reads:
        files.append([args.unpaired_reads, False])

    corrupt_files = []
    outfp = None
    output_name = None

    if args.single_output_file:
        outfp = get_file_writer(args.single_output_file, args.gzip, args.bzip)
    else:
        if '-' in filenames or '/dev/stdin' in filenames:
            print(
                "Accepting input from stdin; output filename must "
                "be provided with '-o'.",
                file=sys.stderr)
            sys.exit(1)

    #
    # main loop: iterate over all files given, do diginorm.
    #

    for filename, require_paired in files:
        if not args.single_output_file:
            output_name = os.path.basename(filename) + '.keep'
            outfp = open(output_name, 'wb')
            outfp = get_file_writer(outfp, args.gzip, args.bzip)

        # failsafe context manager in case an input file breaks
        with catch_io_errors(filename, outfp, args.single_output_file,
                             args.force, corrupt_files):

            screed_iter = screed.open(filename)
            reader = broken_paired_reader(screed_iter,
                                          min_length=args.ksize,
                                          force_single=force_single,
                                          require_paired=require_paired)

            # actually do diginorm
            for record in with_diagnostics(reader, filename):
                if record is not None:
                    write_record(record, outfp)

            log_info('output in {name}', name=describe_file_handle(outfp))
            if not args.single_output_file:
                outfp.close()

    # finished - print out some diagnostics.

    log_info('Total number of unique k-mers: {umers}',
             umers=countgraph.n_unique_kmers())

    if args.savegraph:
        log_info('...saving to {name}', name=args.savegraph)
        countgraph.save(args.savegraph)

    fp_rate = \
        khmer.calc_expected_collisions(countgraph, False, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975

    log_info('fp rate estimated to be {fpr:1.3f}', fpr=fp_rate)

    if args.force and len(corrupt_files) > 0:
        log_error("** WARNING: Finished with errors!")
        log_error("** I/O Errors occurred in the following files:")
        log_error("\t" + " ".join(corrupt_files))
示例#44
0
def main():
    info('split-paired-reads.py')
    args = get_parser().parse_args()

    infile = args.infile

    filenames = [infile]
    check_input_files(infile, args.force)
    check_space(filenames, args.force)

    # decide where to put output files - specific directory? or just default?
    if infile == '/dev/stdin' or infile == '-':
        if not (args.output_first and args.output_second):
            print >> sys.stderr, ("Accepting input from stdin; "
                                  "output filenames must be provided.")
            sys.exit(1)
    elif args.output_directory:
        if not os.path.exists(args.output_directory):
            os.makedirs(args.output_directory)
        out1 = args.output_directory + '/' + os.path.basename(infile) + '.1'
        out2 = args.output_directory + '/' + os.path.basename(infile) + '.2'
    else:
        out1 = os.path.basename(infile) + '.1'
        out2 = os.path.basename(infile) + '.2'

    # OVERRIDE output file locations with -1, -2
    if args.output_first:
        fp_out1 = args.output_first
        out1 = fp_out1.name
    else:
        # Use default filename created above
        fp_out1 = open(out1, 'w')
    if args.output_second:
        fp_out2 = args.output_second
        out2 = fp_out2.name
    else:
        # Use default filename created above
        fp_out2 = open(out2, 'w')

    counter1 = 0
    counter2 = 0
    index = None

    screed_iter = screed.open(infile, parse_description=False)

    # walk through all the reads in broken-paired mode.
    paired_iter = broken_paired_reader(screed_iter)
    for index, is_pair, record1, record2 in paired_iter:
        if index % 10000 == 0:
            print('...', index, file=sys.stderr)

        # are we requiring pairs?
        if args.force_paired and not is_pair:
            print('ERROR, %s is not part of a pair' % record1.name,
                  file=sys.stderr)
            sys.exit(1)

        if is_pair:
            write_record(record1, fp_out1)
            counter1 += 1
            write_record(record2, fp_out2)
            counter2 += 1
        else:
            name = record1.name
            if check_is_left(name):
                write_record(record1, fp_out1)
                counter1 += 1
            elif check_is_right(name):
                write_record(record1, fp_out2)
                counter2 += 1
            else:
                print("Unrecognized format for read pair information: %s" %
                      name,
                      file=sys.stderr)
                print("Exiting.", file=sys.stderr)
                sys.exit(1)

    print("DONE; split %d sequences (%d left, %d right)" %
          (counter1 + counter2, counter1, counter2),
          file=sys.stderr)
    print("/1 reads in %s" % out1, file=sys.stderr)
    print("/2 reads in %s" % out2, file=sys.stderr)
示例#45
0
def main():  # pylint: disable=too-many-branches,too-many-statements
    info('saturate-by-median.py', ['diginorm'])
    parser = sanitize_help(get_parser())
    args = parser.parse_args()

    report_on_config(args)

    report_fp = args.report
    report_frequency = args.report_frequency

    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, False)
    if args.savegraph:
        check_space_for_graph(args, 'countgraph', False)

    # list to save error files along with throwing exceptions
    if args.force:
        corrupt_files = []

    if args.loadgraph:
        print('loading k-mer countgraph from', args.loadgraph)
        htable = khmer.load_countgraph(args.loadgraph)
    else:
        print('making countgraph')
        htable = create_countgraph(args)

    total = 0
    discarded = 0

    for index, input_filename in enumerate(args.input_filenames):
        total_acc = 0
        discarded_acc = 0

        try:
            total_acc, discarded_acc = normalize_by_median(input_filename,
                                                           htable, args,
                                                           report_fp,
                                                           report_frequency)
        except IOError as err:
            handle_error(err, input_filename)
            if not args.force:
                print("NOTE: This can be overridden using the --force"
                      " argument", file=sys.stderr)
                print('** Exiting!', file=sys.stderr)
                sys.exit(1)
            else:
                print('*** Skipping error file, moving on...', file=sys.stderr)
                corrupt_files.append(input_filename)
        else:
            if total_acc == 0 and discarded_acc == 0:
                print('SKIPPED empty file', input_filename)
            else:
                total += total_acc
                discarded += discarded_acc
                print('DONE with {inp}; kept {kept} of {total} or {perc:2}%'\
                    .format(inp=input_filename,
                            kept=total - discarded, total=total,
                            perc=int(100. - discarded / float(total) * 100.)))

    if args.savegraph:
        print('Saving k-mer countgraph through', input_filename)
        print('...saving to', args.savegraph)
        htable.save(args.savegraph)

    # re: threshold, see Zhang et al.,
    # http://arxiv.org/abs/1309.2975
    fp_rate = khmer.calc_expected_collisions(htable, args.force, max_false_pos=.8)
    print('fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate))

    if args.force and len(corrupt_files) > 0:
        print("** WARNING: Finished with errors!", file=sys.stderr)
        print("** I/O Errors occurred in the following files:", file=sys.stderr)
        print("\t", " ".join(corrupt_files), file=sys.stderr)
示例#46
0
def main():
    info('find-knots.py', ['graph'])
    args = get_parser().parse_args()

    graphbase = args.graphbase

    # @RamRS: This might need some more work
    infiles = [graphbase + '.pt', graphbase + '.tagset']
    if os.path.exists(graphbase + '.stoptags'):
        infiles.append(graphbase + '.stoptags')
    for _ in infiles:
        check_input_files(_, False)

    check_space(infiles)

    print >> sys.stderr, 'loading k-mer presence table %s.pt' % graphbase
    htable = khmer.load_hashbits(graphbase + '.pt')

    print >> sys.stderr, 'loading tagset %s.tagset...' % graphbase
    htable.load_tagset(graphbase + '.tagset')

    initial_stoptags = False  # @CTB regularize with make-initial
    if os.path.exists(graphbase + '.stoptags'):
        print >> sys.stderr, 'loading stoptags %s.stoptags' % graphbase
        htable.load_stop_tags(graphbase + '.stoptags')
        initial_stoptags = True

    pmap_files = glob.glob(args.graphbase + '.subset.*.pmap')

    print >>sys.stderr, 'loading %d pmap files (first one: %s)' % \
        (len(pmap_files), pmap_files[0])
    print >> sys.stderr, '---'
    print >> sys.stderr, 'output stoptags will be in', graphbase + '.stoptags'
    if initial_stoptags:
        print >>sys.stderr, \
            '(these output stoptags will include the already-loaded set)'
    print >> sys.stderr, '---'

    # create counting hash
    ksize = htable.ksize()
    counting = khmer.new_counting_hash(ksize, args.min_tablesize,
                                       args.n_tables)

    # load & merge
    for index, subset_file in enumerate(pmap_files):
        print >> sys.stderr, '<-', subset_file
        subset = htable.load_subset_partitionmap(subset_file)

        print >> sys.stderr, '** repartitioning subset... %s' % subset_file
        htable.repartition_largest_partition(subset, counting,
                                             EXCURSION_DISTANCE,
                                             EXCURSION_KMER_THRESHOLD,
                                             EXCURSION_KMER_COUNT_THRESHOLD)

        print >> sys.stderr, '** merging subset... %s' % subset_file
        htable.merge_subset(subset)

        print >> sys.stderr, '** repartitioning, round 2... %s' % subset_file
        size = htable.repartition_largest_partition(
            None, counting, EXCURSION_DISTANCE, EXCURSION_KMER_THRESHOLD,
            EXCURSION_KMER_COUNT_THRESHOLD)

        print >> sys.stderr, '** repartitioned size:', size

        print >> sys.stderr, 'saving stoptags binary'
        htable.save_stop_tags(graphbase + '.stoptags')
        os.rename(subset_file, subset_file + '.processed')
        print >> sys.stderr, '(%d of %d)\n' % (index, len(pmap_files))

    print >> sys.stderr, 'done!'
示例#47
0
def main():
    info('load-graph.py', ['graph', 'SeqAn'])
    args = get_parser().parse_args()
    report_on_config(args, hashtype='hashbits')

    base = args.output_filename
    filenames = args.input_filenames

    for _ in args.input_filenames:
        check_input_files(_, args.force)

    check_space(args.input_filenames, args.force)
    check_space_for_hashtable(
        (float(args.n_tables * args.min_tablesize) / 8.), args.force)

    print >>sys.stderr, 'Saving k-mer presence table to %s' % base
    print >>sys.stderr, 'Loading kmers from sequences in %s' % repr(filenames)
    if args.no_build_tagset:
        print >>sys.stderr, 'We WILL NOT build the tagset.'
    else:
        print >>sys.stderr, 'We WILL build the tagset', \
                            ' (for partitioning/traversal).'

    print >>sys.stderr, 'making k-mer presence table'
    htable = khmer.new_hashbits(args.ksize, args.min_tablesize, args.n_tables)

    if args.no_build_tagset:
        target_method = htable.consume_fasta_with_reads_parser
    else:
        target_method = htable.consume_fasta_and_tag_with_reads_parser

    for _, filename in enumerate(filenames):
        rparser = khmer.ReadParser(filename)
        threads = []
        print >>sys.stderr, 'consuming input', filename
        for num in xrange(args.threads):
            cur_thread = threading.Thread(
                target=target_method, args=(rparser,))
            threads.append(cur_thread)
            cur_thread.start()

        for thread in threads:
            thread.join()

    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of unique k-mers: {0}'.format(
            htable.n_unique_kmers())

    print >>sys.stderr, 'saving k-mer presence table in', base + '.pt'
    htable.save(base + '.pt')

    if not args.no_build_tagset:
        print >>sys.stderr, 'saving tagset in', base + '.tagset'
        htable.save_tagset(base + '.tagset')

    info_fp = open(base + '.info', 'w')
    info_fp.write('%d unique k-mers' % htable.n_unique_kmers())

    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.15)
    # 0.18 is ACTUAL MAX. Do not change.

    print >>sys.stderr, 'fp rate estimated to be %1.3f' % fp_rate
    if args.write_fp_rate:
        print >> info_fp, \
            '\nfalse positive rate estimated to be %1.3f' % fp_rate

    print >> sys.stderr, 'wrote to', base + '.info and', base + '.pt'
    if not args.no_build_tagset:
        print >> sys.stderr, 'and ' + base + '.tagset'
示例#48
0
def main():

    info('load-into-counting.py', ['counting', 'SeqAn'])

    args = get_parser().parse_args()
    report_on_config(args)

    base = args.output_countingtable_filename
    filenames = args.input_sequence_filename

    for name in args.input_sequence_filename:
        check_input_files(name, args.force)

    check_space(args.input_sequence_filename, args.force)
    check_space_for_hashtable(args.n_tables * args.min_tablesize, args.force)

    check_file_writable(base)
    check_file_writable(base + ".info")

    print >> sys.stderr, 'Saving k-mer counting table to %s' % base
    print >> sys.stderr, 'Loading kmers from sequences in %s' % repr(filenames)

    # clobber the '.info' file now, as we always open in append mode below
    if os.path.exists(base + '.info'):
        os.remove(base + '.info')

    print >> sys.stderr, 'making k-mer counting table'
    htable = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                     args.n_tables)
    htable.set_use_bigcount(args.bigcount)

    filename = None

    total_num_reads = 0

    for index, filename in enumerate(filenames):

        rparser = khmer.ReadParser(filename)
        threads = []
        print >> sys.stderr, 'consuming input', filename
        for _ in xrange(args.threads):
            cur_thrd = \
                threading.Thread(
                    target=htable.consume_fasta_with_reads_parser,
                    args=(rparser, )
                )
            threads.append(cur_thrd)
            cur_thrd.start()

        for thread in threads:
            thread.join()

        if index > 0 and index % 10 == 0:
            check_space_for_hashtable(args.n_tables * args.min_tablesize,
                                      args.force)
            print >> sys.stderr, 'mid-save', base
            htable.save(base)
        with open(base + '.info', 'a') as info_fh:
            print >> info_fh, 'through', filename
        total_num_reads += rparser.num_reads

    n_kmers = htable.n_unique_kmers()
    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of unique k-mers:', n_kmers
        with open(base + '.info', 'a') as info_fp:
            print >> info_fp, 'Total number of unique k-mers:', n_kmers

    print >> sys.stderr, 'saving', base
    htable.save(base)

    # Change max_false_pos=0.2 only if you really grok it. HINT: You don't
    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.2)

    with open(base + '.info', 'a') as info_fp:
        print >> info_fp, 'fp rate estimated to be %1.3f\n' % fp_rate

    if args.summary_info:
        mr_fmt = args.summary_info.lower()
        mr_file = base + '.info.' + mr_fmt
        print >> sys.stderr, "Writing summmary info to", mr_file
        with open(mr_file, 'w') as mr_fh:
            if mr_fmt == 'json':
                mr_data = {
                    "ht_name": os.path.basename(base),
                    "fpr": fp_rate,
                    "num_kmers": n_kmers,
                    "files": filenames,
                    "mrinfo_version": "0.2.0",
                    "num_reads": total_num_reads,
                }
                json.dump(mr_data, mr_fh)
                mr_fh.write('\n')
            elif mr_fmt == 'tsv':
                mr_fh.write("ht_name\tfpr\tnum_kmers\tnum_reads\tfiles\n")
                vals = [
                    os.path.basename(base),
                    "{:1.3f}".format(fp_rate),
                    str(n_kmers),
                    str(total_num_reads),
                    ";".join(filenames),
                ]
                mr_fh.write("\t".join(vals) + "\n")

    print >> sys.stderr, 'fp rate estimated to be %1.3f' % fp_rate

    print >> sys.stderr, 'DONE.'
    print >> sys.stderr, 'wrote to:', base + '.info'
示例#49
0
def main():
    info('trim-low-abund.py', ['streaming'])
    parser = sanitize_help(get_parser())
    args = parser.parse_args()

    ###

    if len(set(args.input_filenames)) != len(args.input_filenames):
        print("Error: Cannot input the same filename multiple times.",
              file=sys.stderr)
        sys.exit(1)

    if args.trim_at_coverage != DEFAULT_TRIM_AT_COVERAGE and \
       not args.variable_coverage:
        print("Error: --trim-at-coverage/-Z given, but",
              "--variable-coverage/-V not specified.",
              file=sys.stderr)
        sys.exit(1)

    if args.diginorm_coverage != DEFAULT_DIGINORM_COVERAGE and \
       not args.diginorm:
        print("Error: --diginorm-coverage given, but",
              "--diginorm not specified.",
              file=sys.stderr)
        sys.exit(1)

    if args.diginorm and args.single_pass:
        print("Error: --diginorm and --single-pass are incompatible!\n"
              "You probably want to use normalize-by-median.py instead.",
              file=sys.stderr)
        sys.exit(1)

    ###

    report_on_config(args)
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savegraph:
        graphsize = calculate_graphsize(args, 'countgraph')
        check_space_for_graph(args.savegraph, graphsize, args.force)

    if ('-' in args.input_filenames or '/dev/stdin' in args.input_filenames) \
       and not args.output:
        print("Accepting input from stdin; output filename must "
              "be provided with -o.", file=sys.stderr)
        sys.exit(1)

    if args.loadgraph:
        print('loading countgraph from', args.loadgraph, file=sys.stderr)
        ct = khmer.load_countgraph(args.loadgraph)
    else:
        print('making countgraph', file=sys.stderr)
        ct = khmer_args.create_countgraph(args)

    K = ct.ksize()
    tempdir = tempfile.mkdtemp('khmer', 'tmp', args.tempdir)
    print('created temporary directory %s; '
          'use -T to change location' % tempdir, file=sys.stderr)

    trimmer = Trimmer(ct, not args.variable_coverage, args.cutoff,
                      args.trim_at_coverage)
    if args.diginorm:
        trimmer.set_diginorm(args.diginorm_coverage)

    # ### FIRST PASS ###

    save_pass2_total = 0

    written_bp = 0
    written_reads = 0

    # only create the file writer once if outfp is specified; otherwise,
    # create it for each file.
    if args.output:
        trimfp = get_file_writer(args.output, args.gzip, args.bzip)

    pass2list = []
    for filename in args.input_filenames:
        # figure out temporary filename for 2nd pass
        pass2filename = os.path.basename(filename) + '.pass2'
        pass2filename = os.path.join(tempdir, pass2filename)
        pass2fp = open(pass2filename, 'w')

        # construct output filenames
        if args.output is None:
            # note: this will be saved in trimfp.
            outfp = open(os.path.basename(filename) + '.abundtrim', 'wb')

            # get file handle w/gzip, bzip
            trimfp = get_file_writer(outfp, args.gzip, args.bzip)

        # record all this info
        pass2list.append((filename, pass2filename, trimfp))

        # input file stuff: get a broken_paired reader.
        screed_iter = screed.open(filename)
        paired_iter = broken_paired_reader(screed_iter, min_length=K,
                                           force_single=args.ignore_pairs)

        # main loop through the file.
        n_start = trimmer.n_reads
        save_start = trimmer.n_saved

        watermark = REPORT_EVERY_N_READS
        for read in trimmer.pass1(paired_iter, pass2fp):
            if (trimmer.n_reads - n_start) > watermark:
                print('...', filename, trimmer.n_saved,
                      trimmer.n_reads, trimmer.n_bp,
                      written_reads, written_bp, file=sys.stderr)
                watermark += REPORT_EVERY_N_READS

            # write out the trimmed/etc sequences that AREN'T going to be
            # revisited in a 2nd pass.
            write_record(read, trimfp)
            written_bp += len(read)
            written_reads += 1
        pass2fp.close()

        print('%s: kept aside %d of %d from first pass, in %s' %
              (filename,
               trimmer.n_saved - save_start, trimmer.n_reads - n_start,
               filename),
              file=sys.stderr)

    # first pass goes across all the data, so record relevant stats...
    n_reads = trimmer.n_reads
    n_bp = trimmer.n_bp
    n_skipped = trimmer.n_skipped
    bp_skipped = trimmer.bp_skipped
    save_pass2_total = trimmer.n_saved

    # ### SECOND PASS. ###

    # nothing should have been skipped yet!
    assert trimmer.n_skipped == 0
    assert trimmer.bp_skipped == 0

    if args.single_pass:
        pass2list = []

    # go back through all the files again.
    for _, pass2filename, trimfp in pass2list:
        print('second pass: looking at sequences kept aside in %s' %
              pass2filename,
              file=sys.stderr)

        # note that for this second pass, we don't care about paired
        # reads - they will be output in the same order they're read in,
        # so pairs will stay together if not orphaned.  This is in contrast
        # to the first loop.  Hence, force_single=True below.

        screed_iter = screed.open(pass2filename, parse_description=False)
        paired_iter = broken_paired_reader(screed_iter, min_length=K,
                                           force_single=True)

        watermark = REPORT_EVERY_N_READS
        for read in trimmer.pass2(paired_iter):
            if (trimmer.n_reads - n_start) > watermark:
                print('... x 2', trimmer.n_reads - n_start,
                      pass2filename, trimmer.n_saved,
                      trimmer.n_reads, trimmer.n_bp,
                      written_reads, written_bp, file=sys.stderr)
                watermark += REPORT_EVERY_N_READS

            write_record(read, trimfp)
            written_reads += 1
            written_bp += len(read)

        print('removing %s' % pass2filename, file=sys.stderr)
        os.unlink(pass2filename)

        # if we created our own trimfps, close 'em.
        if not args.output:
            trimfp.close()

    print('removing temp directory & contents (%s)' % tempdir, file=sys.stderr)
    shutil.rmtree(tempdir)

    trimmed_reads = trimmer.trimmed_reads

    n_passes = 1.0 + (float(save_pass2_total) / n_reads)
    percent_reads_trimmed = float(trimmed_reads + (n_reads - written_reads)) /\
        n_reads * 100.0

    print('read %d reads, %d bp' % (n_reads, n_bp,), file=sys.stderr)
    print('wrote %d reads, %d bp' % (written_reads, written_bp,),
          file=sys.stderr)
    print('looked at %d reads twice (%.2f passes)' % (save_pass2_total,
                                                      n_passes),
          file=sys.stderr)
    print('removed %d reads and trimmed %d reads (%.2f%%)' %
          (n_reads - written_reads, trimmed_reads, percent_reads_trimmed),
          file=sys.stderr)
    print('trimmed or removed %.2f%% of bases (%d total)' %
          ((1 - (written_bp / float(n_bp))) * 100.0, n_bp - written_bp),
          file=sys.stderr)

    if args.variable_coverage:
        percent_reads_hicov = 100.0 * float(n_reads - n_skipped) / n_reads
        print('%d reads were high coverage (%.2f%%);' % (n_reads - n_skipped,
                                                         percent_reads_hicov),
              file=sys.stderr)
        print('skipped %d reads/%d bases because of low coverage' %
              (n_skipped, bp_skipped),
              file=sys.stderr)

    fp_rate = \
        khmer.calc_expected_collisions(ct, args.force, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975
    print('fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate),
          file=sys.stderr)

    print('output in *.abundtrim', file=sys.stderr)

    if args.savegraph:
        print("Saving k-mer countgraph to",
              args.savegraph, file=sys.stderr)
        ct.save(args.savegraph)
示例#50
0
def main():  # pylint: disable=too-many-branches,too-many-statements
    info('normalize-by-median.py', ['diginorm'])
    args = get_parser().parse_args()

    report_on_config(args)

    report_fp = args.report

    # check for similar filenames
    filenames = []
    for pathfilename in args.input_filenames:
        filename = pathfilename.split('/')[-1]
        if (filename in filenames):
            print >> sys.stderr, "WARNING: At least two input files are named \
%s . (The script normalize-by-median.py can not handle this, only one .keep \
file for one of the input files will be generated.)" % filename
        else:
            filenames.append(filename)

    # check for others
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savetable:
        check_space_for_hashtable(args.n_tables * args.min_tablesize,
                                  args.force)

    # list to save error files along with throwing exceptions
    corrupt_files = []

    if args.loadtable:
        print 'loading k-mer counting table from', args.loadtable
        htable = khmer.load_counting_hash(args.loadtable)
    else:
        print >> sys.stderr, 'making k-mer counting table'
        htable = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                         args.n_tables)

    input_filename = None

    for index, input_filename in enumerate(args.input_filenames):
        total_acc, discarded_acc, corrupt_files = \
            normalize_by_median_and_check(
                input_filename, htable, args.single_output_file,
                args.fail_save, args.paired, args.cutoff, args.force,
                corrupt_files, report_fp)

        if (args.dump_frequency > 0 and index > 0
                and index % args.dump_frequency == 0):
            print 'Backup: Saving k-mer counting file through', input_filename
            if args.savetable:
                hashname = args.savetable
                print '...saving to', hashname
            else:
                hashname = 'backup.ct'
                print 'Nothing given for savetable, saving to', hashname
            htable.save(hashname)

    if args.paired and args.unpaired_reads:
        args.paired = False
        output_name = args.unpaired_reads
        if not args.single_output_file:
            output_name = os.path.basename(args.unpaired_reads) + '.keep'
        outfp = open(output_name, 'w')
        total_acc, discarded_acc, corrupt_files = \
            normalize_by_median_and_check(
                args.unpaired_reads, htable, args.single_output_file,
                args.fail_save, args.paired, args.cutoff, args.force,
                corrupt_files, report_fp)

    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of unique k-mers: {0}'.format(
            htable.n_unique_kmers())

    if args.savetable:
        print 'Saving k-mer counting table through', input_filename
        print '...saving to', args.savetable
        htable.save(args.savetable)

    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975

    print >> sys.stderr, \
        'fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate)

    if args.force and len(corrupt_files) > 0:
        print >> sys.stderr, "** WARNING: Finished with errors!"
        print >> sys.stderr, "** IOErrors occurred in the following files:"
        print >> sys.stderr, "\t", " ".join(corrupt_files)
示例#51
0
def main():
    info('sample-reads-randomly.py')
    args = get_parser().parse_args()

    for _ in args.filenames:
        check_input_files(_, args.force)

    check_space(args.filenames, args.force)

    # seed the random number generator?
    if args.random_seed:
        random.seed(args.random_seed)

    # bound n_samples
    num_samples = max(args.num_samples, 1)

    #
    # Figure out what the output filename is going to be
    #

    output_file = args.output_file
    if output_file:
        if num_samples > 1:
            sys.stderr.write(
                "Error: cannot specify -o with more than one sample.")
            if not args.force:
                sys.exit(1)
        output_filename = output_file.name
    else:
        filename = args.filenames[0]
        output_filename = os.path.basename(filename) + '.subset'

    if num_samples == 1:
        print >>sys.stderr, 'Subsampling %d reads using reservoir sampling.' %\
            args.num_reads
        print >>sys.stderr, 'Subsampled reads will be placed in %s' % \
            output_filename
        print >> sys.stderr, ''
    else:  # > 1
        print >>sys.stderr, 'Subsampling %d reads, %d times,' \
            % (args.num_reads, num_samples), ' using reservoir sampling.'
        print >>sys.stderr, 'Subsampled reads will be placed in %s.N' \
            % output_filename
        print >> sys.stderr, ''

    reads = []
    for n in range(num_samples):
        reads.append([])

    # read through all the sequences and load/resample the reservoir
    for filename in args.filenames:
        print >> sys.stderr, 'opening', filename, 'for reading'
        screed_iter = screed.open(filename, parse_description=False)

        for count, (_, ispair, rcrd1, rcrd2) in enumerate(
                broken_paired_reader(screed_iter,
                                     force_single=args.force_single)):
            if count % 10000 == 0:
                print >> sys.stderr, '...', count, 'reads scanned'
                if count >= args.max_reads:
                    print >>sys.stderr, 'reached upper limit of %d reads' % \
                        args.max_reads, '(see -M); exiting'
                    break

            # collect first N reads
            if count < args.num_reads:
                for n in range(num_samples):
                    reads[n].append((rcrd1, rcrd2))
            else:
                assert len(reads[n]) <= count

                # use reservoir sampling to replace reads at random
                # see http://en.wikipedia.org/wiki/Reservoir_sampling

                for n in range(num_samples):
                    guess = random.randint(1, count)
                    if guess <= args.num_reads:
                        reads[n][guess - 1] = (rcrd1, rcrd2)

    # output all the subsampled reads:
    if len(reads) == 1:
        print >>sys.stderr, 'Writing %d sequences to %s' % \
            (len(reads[0]), output_filename)
        if not output_file:
            output_file = open(output_filename, 'w')

        for records in reads[0]:
            write_record(records[0], output_file)
            if records[1] is not None:
                write_record(records[1], output_file)
    else:
        for n in range(num_samples):
            n_filename = output_filename + '.%d' % n
            print >>sys.stderr, 'Writing %d sequences to %s' % \
                (len(reads[n]), n_filename)
            output_file = open(n_filename, 'w')
            for records in reads[n]:
                write_record(records[0], output_file)
                if records[1] is not None:
                    write_record(records[1], output_file)
示例#52
0
def main():
    parser = sanitize_help(get_parser())
    args = parser.parse_args()

    configure_logging(args.quiet)

    ###

    if len(set(args.input_filenames)) != len(args.input_filenames):
        log_error("Error: Cannot input the same filename multiple times.")
        sys.exit(1)

    if args.trim_at_coverage != DEFAULT_TRIM_AT_COVERAGE and \
       not args.variable_coverage:
        log_error("Error: --trim-at-coverage/-Z given, but "
                  "--variable-coverage/-V not specified.")
        sys.exit(1)

    if args.diginorm_coverage != DEFAULT_DIGINORM_COVERAGE and \
       not args.diginorm:
        log_error("Error: --diginorm-coverage given, but "
                  "--diginorm not specified.")
        sys.exit(1)

    if args.diginorm and args.single_pass:
        log_error("Error: --diginorm and --single-pass are incompatible!\n"
                  "You probably want to use normalize-by-median.py instead.")
        sys.exit(1)

    ###

    graphtype = 'countgraph' if not args.small_count else 'smallcountgraph'
    report_on_config(args, graphtype=graphtype)
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savegraph:
        graphsize = calculate_graphsize(args, graphtype)
        check_space_for_graph(args.savegraph, graphsize, args.force)

    if ('-' in args.input_filenames or '/dev/stdin' in args.input_filenames) \
       and not args.output:
        log_error("Accepting input from stdin; output filename must "
                  "be provided with -o.")
        sys.exit(1)

    if args.loadgraph:
        log_info('loading countgraph from {graph}', graph=args.loadgraph)
        if args.small_count:
            ct = SmallCountgraph.load(args.loadgraph)
        else:
            ct = Countgraph.load(args.loadgraph)
    else:
        log_info('making countgraph')
        ct = khmer_args.create_countgraph(args)

    K = ct.ksize()
    tempdir = tempfile.mkdtemp('khmer', 'tmp', args.tempdir)
    log_info('created temporary directory {temp};\n'
             'use -T to change location', temp=tempdir)

    trimmer = Trimmer(ct, not args.variable_coverage, args.cutoff,
                      args.trim_at_coverage)
    if args.diginorm:
        trimmer.set_diginorm(args.diginorm_coverage)

    # ### FIRST PASS ###

    save_pass2_total = 0

    written_bp = 0
    written_reads = 0

    # only create the file writer once if outfp is specified; otherwise,
    # create it for each file.
    if args.output:
        trimfp = get_file_writer(args.output, args.gzip, args.bzip)

    pass2list = []
    for filename in args.input_filenames:
        # figure out temporary filename for 2nd pass
        pass2filename = filename.replace(os.path.sep, '-') + '.pass2'
        pass2filename = os.path.join(tempdir, pass2filename)
        pass2fp = open(pass2filename, 'w')

        # construct output filenames
        if args.output is None:
            # note: this will be saved in trimfp.
            outfp = open(os.path.basename(filename) + '.abundtrim', 'wb')

            # get file handle w/gzip, bzip
            trimfp = get_file_writer(outfp, args.gzip, args.bzip)

        # record all this info
        pass2list.append((filename, pass2filename, trimfp))

        # input file stuff: get a broken_paired reader.
        paired_iter = broken_paired_reader(ReadParser(filename), min_length=K,
                                           force_single=args.ignore_pairs)

        # main loop through the file.
        n_start = trimmer.n_reads
        save_start = trimmer.n_saved

        watermark = REPORT_EVERY_N_READS
        for read in trimmer.pass1(paired_iter, pass2fp):
            if (trimmer.n_reads - n_start) > watermark:
                log_info("... {filename} {n_saved} {n_reads} {n_bp} "
                         "{w_reads} {w_bp}", filename=filename,
                         n_saved=trimmer.n_saved, n_reads=trimmer.n_reads,
                         n_bp=trimmer.n_bp, w_reads=written_reads,
                         w_bp=written_bp)
                watermark += REPORT_EVERY_N_READS

            # write out the trimmed/etc sequences that AREN'T going to be
            # revisited in a 2nd pass.
            write_record(read, trimfp)
            written_bp += len(read)
            written_reads += 1
        pass2fp.close()

        log_info("{filename}: kept aside {kept} of {total} from first pass",
                 filename=filename, kept=trimmer.n_saved - save_start,
                 total=trimmer.n_reads - n_start)

    # first pass goes across all the data, so record relevant stats...
    n_reads = trimmer.n_reads
    n_bp = trimmer.n_bp
    n_skipped = trimmer.n_skipped
    bp_skipped = trimmer.bp_skipped
    save_pass2_total = trimmer.n_saved

    # ### SECOND PASS. ###

    # nothing should have been skipped yet!
    assert trimmer.n_skipped == 0
    assert trimmer.bp_skipped == 0

    if args.single_pass:
        pass2list = []

    # go back through all the files again.
    for _, pass2filename, trimfp in pass2list:
        log_info('second pass: looking at sequences kept aside in {pass2}',
                 pass2=pass2filename)

        # note that for this second pass, we don't care about paired
        # reads - they will be output in the same order they're read in,
        # so pairs will stay together if not orphaned.  This is in contrast
        # to the first loop.  Hence, force_single=True below.

        read_parser = ReadParser(pass2filename)
        paired_iter = broken_paired_reader(read_parser,
                                           min_length=K,
                                           force_single=True)

        watermark = REPORT_EVERY_N_READS
        for read in trimmer.pass2(paired_iter):
            if (trimmer.n_reads - n_start) > watermark:
                log_info('... x 2 {a} {b} {c} {d} {e} {f} {g}',
                         a=trimmer.n_reads - n_start,
                         b=pass2filename, c=trimmer.n_saved,
                         d=trimmer.n_reads, e=trimmer.n_bp,
                         f=written_reads, g=written_bp)
                watermark += REPORT_EVERY_N_READS

            write_record(read, trimfp)
            written_reads += 1
            written_bp += len(read)

        read_parser.close()

        log_info('removing {pass2}', pass2=pass2filename)
        os.unlink(pass2filename)

        # if we created our own trimfps, close 'em.
        if not args.output:
            trimfp.close()

    try:
        log_info('removing temp directory & contents ({temp})', temp=tempdir)
        shutil.rmtree(tempdir)
    except OSError as oe:
        log_info('WARNING: unable to remove {temp} (probably an NFS issue); '
                 'please remove manually', temp=tempdir)

    trimmed_reads = trimmer.trimmed_reads

    n_passes = 1.0 + (float(save_pass2_total) / n_reads)
    percent_reads_trimmed = float(trimmed_reads + (n_reads - written_reads)) /\
        n_reads * 100.0

    log_info('read {read} reads, {bp} bp', read=n_reads, bp=n_bp)
    log_info('wrote {wr} reads, {wbp} bp', wr=written_reads, wbp=written_bp)
    log_info('looked at {st} reads twice ({np:.2f} passes)',
             st=save_pass2_total, np=n_passes)
    log_info('removed {r} reads and trimmed {t} reads ({p:.2f}%)',
             r=n_reads - written_reads, t=trimmed_reads,
             p=percent_reads_trimmed)
    log_info('trimmed or removed {p:.2f}%% of bases ({bp} total)',
             p=(1 - (written_bp / float(n_bp))) * 100.0, bp=n_bp - written_bp)

    if args.variable_coverage:
        percent_reads_hicov = 100.0 * float(n_reads - n_skipped) / n_reads
        log_info('{n} reads were high coverage ({p:.2f}%);',
                 n=n_reads - n_skipped, p=percent_reads_hicov)
        log_info('skipped {r} reads/{bp} bases because of low coverage',
                 r=n_skipped, bp=bp_skipped)

    fp_rate = \
        khmer.calc_expected_collisions(ct, args.force, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975
    log_info('fp rate estimated to be {fpr:1.3f}', fpr=fp_rate)

    if args.output is None:
        log_info('output in *.abundtrim')
    elif args.output.name == 1:
        log_info('output streamed to stdout')
    elif args.output.name:
        log_info('output in {}'.format(args.output.name))

    if args.savegraph:
        log_info("Saving k-mer countgraph to {graph}", graph=args.savegraph)
        ct.save(args.savegraph)

    if args.summary_info is not None:
        # note that when streaming to stdout the name of args.output will
        # be set to 1
        if args.output is not None and args.output.name != 1:
            base = args.output.name
        # no explicit name or stdout stream -> use a default name
        else:
            base = 'trim-low-abund-{}'.format(
                time.strftime("%Y-%m-%dT%H:%M:%S"))

        info = {'fpr': fp_rate,
                'reads': n_reads,
                'basepairs': n_bp,
                'reads_written': written_reads,
                'basepairs_written': written_bp,
                'reads_skipped': n_skipped,
                'basepairs_skipped': bp_skipped,
                'reads_removed': n_reads - written_reads,
                'reads_trimmed': trimmed_reads,
                'basepairs_removed_or_trimmed': n_bp - written_bp
                }
        store_provenance_info(info, fname=base, format=args.summary_info)
示例#53
0
def main():
    info('extract-paired-reads.py')
    args = get_parser().parse_args()

    infile = args.infile
    check_input_files(infile, args.force)
    check_space([infile], args.force)

    # decide where to put output files - specific directory? or just default?
    if infile == '/dev/stdin' or infile == '-':
        if not (args.output_paired and args.output_single):
            print(
                "Accepting input from stdin; output filenames must be "
                "provided.",
                file=sys.stderr)
            sys.exit(1)
    elif args.output_dir:
        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)
        out1 = args.output_dir + '/' + os.path.basename(infile) + '.se'
        out2 = args.output_dir + '/' + os.path.basename(infile) + '.pe'
    else:
        out1 = os.path.basename(infile) + '.se'
        out2 = os.path.basename(infile) + '.pe'

    # OVERRIDE default output file locations with -p, -s
    if args.output_paired:
        paired_fp = args.output_paired
        out2 = paired_fp.name
    else:
        # Don't override, just open the default filename from above
        paired_fp = open(out2, 'w')
    if args.output_single:
        single_fp = args.output_single
        out1 = single_fp.name
    else:
        # Don't override, just open the default filename from above
        single_fp = open(out1, 'w')

    print('reading file "%s"' % infile, file=sys.stderr)
    print('outputting interleaved pairs to "%s"' % out2, file=sys.stderr)
    print('outputting orphans to "%s"' % out1, file=sys.stderr)

    n_pe = 0
    n_se = 0

    screed_iter = screed.open(infile, parse_description=False)
    for index, is_pair, read1, read2 in broken_paired_reader(screed_iter):
        if index % 100000 == 0 and index > 0:
            print('...', index, file=sys.stderr)

        if is_pair:
            write_record_pair(read1, read2, paired_fp)
            n_pe += 1
        else:
            write_record(read1, single_fp)
            n_se += 1

    single_fp.close()
    paired_fp.close()

    if n_pe == 0:
        raise Exception("no paired reads!? check file formats...")

    print('DONE; read %d sequences,'
          ' %d pairs and %d singletons' % (n_pe * 2 + n_se, n_pe, n_se),
          file=sys.stderr)

    print('wrote to: %s and %s' % (out2, out1), file=sys.stderr)
示例#54
0
def main():  # pylint: disable=too-many-branches,too-many-statements
    info('normalize-by-median.py', ['diginorm'])
    args = get_parser().parse_args()

    report_on_config(args)

    report_fp = args.report

    # check for similar filenames
    filenames = []
    for pathfilename in args.input_filenames:
        filename = pathfilename.split('/')[-1]
        if (filename in filenames):
            print >>sys.stderr, "WARNING: At least two input files are named \
%s . (The script normalize-by-median.py can not handle this, only one .keep \
file for one of the input files will be generated.)" % filename
        else:
            filenames.append(filename)

    # check for others
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savetable:
        check_space_for_hashtable(
            args.n_tables * args.min_tablesize, args.force)

    # list to save error files along with throwing exceptions
    corrupt_files = []

    if args.loadtable:
        print 'loading k-mer counting table from', args.loadtable
        htable = khmer.load_counting_hash(args.loadtable)
    else:
        print >> sys.stderr, 'making k-mer counting table'
        htable = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                         args.n_tables)

    input_filename = None

    for index, input_filename in enumerate(args.input_filenames):
        total_acc, discarded_acc, corrupt_files = \
            normalize_by_median_and_check(
                input_filename, htable, args.single_output_file,
                args.fail_save, args.paired, args.cutoff, args.force,
                corrupt_files, report_fp)

        if (args.dump_frequency > 0 and
                index > 0 and index % args.dump_frequency == 0):
            print 'Backup: Saving k-mer counting file through', input_filename
            if args.savetable:
                hashname = args.savetable
                print '...saving to', hashname
            else:
                hashname = 'backup.ct'
                print 'Nothing given for savetable, saving to', hashname
            htable.save(hashname)

    if args.paired and args.unpaired_reads:
        args.paired = False
        output_name = args.unpaired_reads
        if not args.single_output_file:
            output_name = os.path.basename(args.unpaired_reads) + '.keep'
        outfp = open(output_name, 'w')
        total_acc, discarded_acc, corrupt_files = \
            normalize_by_median_and_check(
                args.unpaired_reads, htable, args.single_output_file,
                args.fail_save, args.paired, args.cutoff, args.force,
                corrupt_files, report_fp)

    if args.report_total_kmers:
        print >> sys.stderr, 'Total number of unique k-mers: {0}'.format(
            htable.n_unique_kmers())

    if args.savetable:
        print 'Saving k-mer counting table through', input_filename
        print '...saving to', args.savetable
        htable.save(args.savetable)

    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975

    print >> sys.stderr, \
        'fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate)

    if args.force and len(corrupt_files) > 0:
        print >> sys.stderr, "** WARNING: Finished with errors!"
        print >> sys.stderr, "** IOErrors occurred in the following files:"
        print >> sys.stderr, "\t", " ".join(corrupt_files)
示例#55
0
def main():  # pylint: disable=too-many-branches,too-many-statements

    info('normalize-by-median.py', ['diginorm'])
    args = get_parser().parse_args()

    report_on_config(args)

    report_fp = args.report
    force_single = args.force_single

    # if optimization args are given, do optimization
    args = oxutils.do_sanity_checking(args, 0.1)

    # check for similar filenames
    # if we're using a single output file only check for identical filenames
    # otherwise, check for identical BASE names as well.
    filenames = []
    basenames = []
    for pathfilename in args.input_filenames:
        filenames.append(pathfilename)
        if args.single_output_file:
            continue  # nothing more to worry about

        basename = os.path.basename(pathfilename)
        if basename in basenames:
            print('ERROR: Duplicate filename--Cannot handle this!',
                  file=sys.stderr)
            print('** Exiting!', file=sys.stderr)
            sys.exit(1)

        basenames.append(basename)

    # check that files exist and there is sufficient output disk space.
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savetable:
        check_space_for_hashtable(args, 'countgraph', args.force)

    # load or create counting table.
    if args.loadtable:
        print('loading k-mer counting table from ' + args.loadtable,
              file=sys.stderr)
        htable = khmer.load_counting_hash(args.loadtable)
        if args.unique_kmers != 0:
            print('Warning: You have specified a number of unique kmers'
                  ' but are loading a precreated counting table--'
                  'argument optimization will NOT be done.', file=sys.stderr)
    else:
        print('making countgraph', file=sys.stderr)
        htable = khmer_args.create_countgraph(args)

    # create an object to handle diginorm of all files
    norm = Normalizer(args.cutoff, htable)

    # make a list of all filenames and if they're paired or not;
    # if we don't know if they're paired, default to allowing but not
    # forcing pairing.
    files = []
    for element in filenames:
        files.append([element, args.paired])
    if args.unpaired_reads:
        files.append([args.unpaired_reads, False])

    corrupt_files = []
    outfp = None
    output_name = None

    if args.single_output_file:
        if args.single_output_file is sys.stdout:
            output_name = '/dev/stdout'
        else:
            output_name = args.single_output_file.name
        outfp = args.single_output_file

    #
    # main loop: iterate over all files given, do diginorm.
    #

    for filename, require_paired in files:
        if not args.single_output_file:
            output_name = os.path.basename(filename) + '.keep'
            outfp = open(output_name, 'w')

        # failsafe context manager in case an input file breaks
        with catch_io_errors(filename, outfp, args.single_output_file,
                             args.force, corrupt_files):

            screed_iter = screed.open(filename, parse_description=False)
            reader = broken_paired_reader(screed_iter, min_length=args.ksize,
                                          force_single=force_single,
                                          require_paired=require_paired)

            # actually do diginorm
            for record in with_diagnostics(filename, norm, reader, report_fp):
                if record is not None:
                    write_record(record, outfp)

            print('output in ' + output_name, file=sys.stderr)
            if output_name is not '/dev/stdout':
                outfp.close()

    # finished - print out some diagnostics.

    print('Total number of unique k-mers: {0}'
          .format(htable.n_unique_kmers()),
          file=sys.stderr)

    if args.savetable:
        print('...saving to ' + args.savetable, file=sys.stderr)
        htable.save(args.savetable)

    fp_rate = \
        khmer.calc_expected_collisions(htable, args.force, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975

    print('fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate),
          file=sys.stderr)

    if args.force and len(corrupt_files) > 0:
        print("** WARNING: Finished with errors!", file=sys.stderr)
        print("** I/O Errors occurred in the following files:",
              file=sys.stderr)
        print("\t", " ".join(corrupt_files), file=sys.stderr)
示例#56
0
def main():
    info('sweep-reads-buffered.py', ['sweep'])
    parser = get_parser()
    args = parser.parse_args()

    if args.min_tablesize < MIN_HSIZE:
        args.min_tablesize = MIN_HSIZE
    if args.ksize < MIN_KSIZE:
        args.ksize = MIN_KSIZE

    report_on_config(args, hashtype='hashbits')

    K = args.ksize
    HT_SIZE = args.min_tablesize
    N_HT = args.n_tables

    traversal_range = args.traversal_range
    input_fastp = args.input_fastp

    if not args.outdir:
        outdir = os.path.dirname(input_fastp)
    else:
        outdir = args.outdir

    max_buffers = args.max_buffers
    output_pref = args.output_prefix
    buf_size = args.buffer_size
    max_reads = args.max_reads

    check_input_files(args.input_fastp, args.force)
    check_valid_file_exists(args.input_files)
    all_input_files = [input_fastp]
    all_input_files.extend(args.input_files)

    # Check disk space availability
    check_space(all_input_files, args.force)

    # figure out input file type (FA/FQ) -- based on first file
    ix = iter(screed.open(args.input_files[0]))
    record = ix.next()
    del ix

    extension = 'fa'
    if hasattr(record, 'quality'):      # fastq!
        extension = 'fq'

    output_buffer = ReadBufferManager(
        max_buffers, max_reads, buf_size, output_pref, outdir, extension)

    # consume the partitioned fasta with which to label the graph
    ht = khmer.LabelHash(K, HT_SIZE, N_HT)
    try:
        print >>sys.stderr, 'consuming input sequences...'
        if args.label_by_pid:
            print >>sys.stderr, '...labeling by partition id (pid)'
            ht.consume_partitioned_fasta_and_tag_with_labels(input_fastp)
        elif args.label_by_seq:
            print >>sys.stderr, '...labeling by sequence'
            for n, record in enumerate(screed.open(input_fastp)):
                if n % 50000 == 0:
                    print >>sys.stderr, \
                        '...consumed {n} sequences...'.format(n=n)
                ht.consume_sequence_and_tag_with_labels(record.sequence, n)
        else:
            print >>sys.stderr, \
                '...labeling to create groups of size {s}'.format(
                    s=args.group_size)
            label = -1
            g = 0
            try:
                outfp = open('{pref}_base_{g}.{ext}'.format(pref=output_pref,
                                                            g=g,
                                                            ext=extension
                                                            ), 'wb')
                for n, record in enumerate(screed.open(input_fastp)):
                    if n % args.group_size == 0:
                        label += 1
                        if label > g:
                            g = label
                            outfp = open('{pref}_base_{g}.{ext}'.format(
                                pref=output_pref, g=g,
                                ext=extension), 'wb')
                    if n % 50000 == 0:
                        print >>sys.stderr, \
                            '...consumed {n} sequences...'.format(n=n)
                    ht.consume_sequence_and_tag_with_labels(record.sequence,
                                                            label)

                    write_record(record, outfp)
 
            except IOError as e:
                print >>sys.stderr, '!! ERROR !!', e
                print >>sys.stderr, '...error splitting input. exiting...'

    except IOError as e:
        print >>sys.stderr, '!! ERROR: !!', e
        print >>sys.stderr, '...error consuming \
                            {i}. exiting...'.format(i=input_fastp)

    print >>sys.stderr, 'done consuming input sequence. \
                        added {t} tags and {l} \
                        labels...'.format(t=ht.n_tags(), l=ht.n_labels())

    label_dict = defaultdict(int)
    label_number_dist = []

    n_orphaned = 0
    n_labeled = 0
    n_mlabeled = 0

    total_t = time.clock()
    start_t = time.clock()
    for read_file in args.input_files:
        print >>sys.stderr, '** sweeping {read_file} for labels...'.format(
            read_file=read_file)
        file_t = 0.0
        try:
            read_fp = screed.open(read_file)
        except IOError as error:
            print >>sys.stderr, '!! ERROR: !!', error
            print >>sys.stderr, '*** Could not open {fn}, skipping...'.format(
                fn=read_file)
        else:
            for _, record in enumerate(read_fp):
                if _ % 50000 == 0:
                    end_t = time.clock()
                    batch_t = end_t - start_t
                    file_t += batch_t
                    print >>sys.stderr, '\tswept {n} reads [{nc} labeled, \
                                         {no} orphaned] \
                                        ** {sec}s ({sect}s total)' \
                                        .format(n=_, nc=n_labeled,
                                                no=n_orphaned,
                                                sec=batch_t, sect=file_t)
                    start_t = time.clock()
                seq = record.sequence
                name = record.name
                try:
                    labels = ht.sweep_label_neighborhood(seq, traversal_range)
                except ValueError as e:
                    pass
                else:
                    if hasattr(record, 'quality'):
                        seq_str = fmt_fastq(name, seq, record.quality, labels)
                    else:
                        seq_str = fmt_fasta(name, seq, labels)
                    label_number_dist.append(len(labels))
                    if labels:
                        n_labeled += 1
                        if len(labels) > 1:
                            output_buffer.queue(seq_str, 'multi')
                            n_mlabeled += 1
                            label_dict['multi'] += 1
                        else:
                            output_buffer.queue(seq_str, labels[0])
                            label_dict[labels[0]] += 1
                    else:
                        n_orphaned += 1
                        output_buffer.queue(seq_str, 'orphaned')
                        label_dict['orphaned'] += 1
            print >>sys.stderr, '** End of file {fn}...'.format(fn=read_file)
            output_buffer.flush_all()
            read_fp.close()

    # gotta output anything left in the buffers at the end!
    print >>sys.stderr, '** End of run...'
    output_buffer.flush_all()
    total_t = time.clock() - total_t

    if output_buffer.num_write_errors > 0 or output_buffer.num_file_errors > 0:
        print >>sys.stderr, '! WARNING: Sweep finished with errors !'
        print >>sys.stderr, '** {writee} reads not written'.format(
            writee=output_buffer.num_write_errors)
        print >>sys.stderr, '** {filee} errors opening files'.format(
            filee=output_buffer.num_file_errors)

    print >>sys.stderr, 'swept {n_reads} for labels...'.format(
        n_reads=n_labeled + n_orphaned)
    print >>sys.stderr, '...with {nc} labeled and {no} orphaned'.format(
        nc=n_labeled, no=n_orphaned)
    print >>sys.stderr, '...and {nmc} multilabeled'.format(nmc=n_mlabeled)

    print >>sys.stderr, '** outputting label number distribution...'
    fn = os.path.join(outdir, '{pref}.dist.txt'.format(pref=output_pref))
    with open(fn, 'wb') as outfp:
        for nc in label_number_dist:
            outfp.write('{nc}\n'.format(nc=nc))

    fn = os.path.join(outdir, '{pref}.counts.csv'.format(pref=output_pref))
    print >>sys.stderr, '** outputting label read counts...'
    with open(fn, 'wb') as outfp:
        for k in label_dict:
            outfp.write('{l},{c}\n'.format(l=k, c=label_dict[k]))
def main():
    info('trim-low-abund.py', ['streaming'])
    parser = sanitize_help(get_parser())
    args = parser.parse_args()

    ###

    if len(set(args.input_filenames)) != len(args.input_filenames):
        print("Error: Cannot input the same filename multiple times.",
              file=sys.stderr)
        sys.exit(1)

    ###

    report_on_config(args)
    check_valid_file_exists(args.input_filenames)
    check_space(args.input_filenames, args.force)
    if args.savegraph:
        graphsize = calculate_graphsize(args, 'countgraph')
        check_space_for_graph(args.savegraph, graphsize, args.force)

    if ('-' in args.input_filenames or '/dev/stdin' in args.input_filenames) \
       and not args.output:
        print(
            "Accepting input from stdin; output filename must "
            "be provided with -o.",
            file=sys.stderr)
        sys.exit(1)

    if args.loadgraph:
        print('loading countgraph from', args.loadgraph, file=sys.stderr)
        ct = khmer.load_countgraph(args.loadgraph)
    else:
        print('making countgraph', file=sys.stderr)
        ct = khmer_args.create_countgraph(args)

    K = ct.ksize()
    CUTOFF = args.cutoff
    NORMALIZE_LIMIT = args.normalize_to

    tempdir = tempfile.mkdtemp('khmer', 'tmp', args.tempdir)
    print('created temporary directory %s; '
          'use -T to change location' % tempdir,
          file=sys.stderr)

    # ### FIRST PASS ###

    save_pass2_total = 0

    n_bp = 0
    n_reads = 0
    written_bp = 0
    written_reads = 0
    trimmed_reads = 0

    pass2list = []
    for filename in args.input_filenames:
        pass2filename = os.path.basename(filename) + '.pass2'
        pass2filename = os.path.join(tempdir, pass2filename)
        if args.output is None:
            trimfp = get_file_writer(
                open(os.path.basename(filename) + '.abundtrim', 'wb'),
                args.gzip, args.bzip)
        else:
            trimfp = get_file_writer(args.output, args.gzip, args.bzip)

        pass2list.append((filename, pass2filename, trimfp))

        screed_iter = screed.open(filename)
        pass2fp = open(pass2filename, 'w')

        save_pass2 = 0
        n = 0

        paired_iter = broken_paired_reader(screed_iter,
                                           min_length=K,
                                           force_single=args.ignore_pairs)
        for n, is_pair, read1, read2 in paired_iter:
            if n % 10000 == 0:
                print('...',
                      n,
                      filename,
                      save_pass2,
                      n_reads,
                      n_bp,
                      written_reads,
                      written_bp,
                      file=sys.stderr)

            # we want to track paired reads here, to make sure that pairs
            # are not split between first pass and second pass.

            if is_pair:
                n_reads += 2
                n_bp += len(read1.sequence) + len(read2.sequence)

                seq1 = read1.sequence.replace('N', 'A')
                seq2 = read2.sequence.replace('N', 'A')

                med1, _, _ = ct.get_median_count(seq1)
                med2, _, _ = ct.get_median_count(seq2)

                if med1 < NORMALIZE_LIMIT or med2 < NORMALIZE_LIMIT:
                    ct.consume(seq1)
                    ct.consume(seq2)
                    write_record_pair(read1, read2, pass2fp)
                    save_pass2 += 2
                else:
                    _, trim_at1 = ct.trim_on_abundance(seq1, CUTOFF)
                    _, trim_at2 = ct.trim_on_abundance(seq2, CUTOFF)

                    if trim_at1 >= K:
                        read1 = trim_record(read1, trim_at1)

                    if trim_at2 >= K:
                        read2 = trim_record(read2, trim_at2)

                    if trim_at1 != len(seq1):
                        trimmed_reads += 1
                    if trim_at2 != len(seq2):
                        trimmed_reads += 1

                    write_record_pair(read1, read2, trimfp)
                    written_reads += 2
                    written_bp += trim_at1 + trim_at2
            else:
                n_reads += 1
                n_bp += len(read1.sequence)

                seq = read1.sequence.replace('N', 'A')

                med, _, _ = ct.get_median_count(seq)

                # has this portion of the graph saturated? if not,
                # consume & save => pass2.
                if med < NORMALIZE_LIMIT:
                    ct.consume(seq)
                    write_record(read1, pass2fp)
                    save_pass2 += 1
                else:  # trim!!
                    _, trim_at = ct.trim_on_abundance(seq, CUTOFF)
                    if trim_at >= K:
                        new_read = trim_record(read1, trim_at)
                        write_record(new_read, trimfp)

                        written_reads += 1
                        written_bp += trim_at

                        if trim_at != len(read1.sequence):
                            trimmed_reads += 1

        pass2fp.close()

        print('%s: kept aside %d of %d from first pass, in %s' %
              (filename, save_pass2, n, filename),
              file=sys.stderr)
        save_pass2_total += save_pass2

    # ### SECOND PASS. ###

    skipped_n = 0
    skipped_bp = 0
    for _, pass2filename, trimfp in pass2list:
        print('second pass: looking at sequences kept aside in %s' %
              pass2filename,
              file=sys.stderr)

        # note that for this second pass, we don't care about paired
        # reads - they will be output in the same order they're read in,
        # so pairs will stay together if not orphaned.  This is in contrast
        # to the first loop.

        for n, read in enumerate(screed.open(pass2filename)):
            if n % 10000 == 0:
                print('... x 2',
                      n,
                      pass2filename,
                      written_reads,
                      written_bp,
                      file=sys.stderr)

            seq = read.sequence.replace('N', 'A')
            med, _, _ = ct.get_median_count(seq)

            # do we retain low-abundance components unchanged?
            if med < NORMALIZE_LIMIT and args.variable_coverage:
                write_record(read, trimfp)

                written_reads += 1
                written_bp += len(read.sequence)
                skipped_n += 1
                skipped_bp += len(read.sequence)

            # otherwise, examine/trim/truncate.
            else:  # med >= NORMALIZE LIMIT or not args.variable_coverage
                _, trim_at = ct.trim_on_abundance(seq, CUTOFF)
                if trim_at >= K:
                    new_read = trim_record(read, trim_at)
                    write_record(new_read, trimfp)

                    written_reads += 1
                    written_bp += trim_at

                    if trim_at != len(read.sequence):
                        trimmed_reads += 1

        print('removing %s' % pass2filename, file=sys.stderr)
        os.unlink(pass2filename)

    print('removing temp directory & contents (%s)' % tempdir, file=sys.stderr)
    shutil.rmtree(tempdir)

    n_passes = 1.0 + (float(save_pass2_total) / n_reads)
    percent_reads_trimmed = float(trimmed_reads + (n_reads - written_reads)) /\
        n_reads * 100.0

    print('read %d reads, %d bp' % (
        n_reads,
        n_bp,
    ), file=sys.stderr)
    print('wrote %d reads, %d bp' % (
        written_reads,
        written_bp,
    ),
          file=sys.stderr)
    print('looked at %d reads twice (%.2f passes)' %
          (save_pass2_total, n_passes),
          file=sys.stderr)
    print('removed %d reads and trimmed %d reads (%.2f%%)' %
          (n_reads - written_reads, trimmed_reads, percent_reads_trimmed),
          file=sys.stderr)
    print('trimmed or removed %.2f%% of bases (%d total)' %
          ((1 - (written_bp / float(n_bp))) * 100.0, n_bp - written_bp),
          file=sys.stderr)

    if args.variable_coverage:
        percent_reads_hicov = 100.0 * float(n_reads - skipped_n) / n_reads
        print('%d reads were high coverage (%.2f%%);' %
              (n_reads - skipped_n, percent_reads_hicov),
              file=sys.stderr)
        print('skipped %d reads/%d bases because of low coverage' %
              (skipped_n, skipped_bp),
              file=sys.stderr)

    fp_rate = \
        khmer.calc_expected_collisions(ct, args.force, max_false_pos=.8)
    # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975
    print('fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate),
          file=sys.stderr)

    print('output in *.abundtrim', file=sys.stderr)

    if args.savegraph:
        print("Saving k-mer countgraph to", args.savegraph, file=sys.stderr)
        ct.save(args.savegraph)
示例#58
0
def main():  # pylint: disable=too-many-locals,too-many-statements
    info('do-partition.py', ['graph'])
    args = get_parser().parse_args()

    report_on_config(args, hashtype='hashbits')

    for infile in args.input_filenames:
        check_file_status(infile, args.force)

    check_space(args.input_filenames, args.force)

    print >>sys.stderr, 'Saving k-mer presence table to %s' % args.graphbase
    print >>sys.stderr, 'Loading kmers from sequences in %s' % \
        repr(args.input_filenames)
    print >>sys.stderr, '--'
    print >>sys.stderr, 'SUBSET SIZE', args.subset_size
    print >>sys.stderr, 'N THREADS', args.threads
    print >>sys.stderr, '--'

    # load-graph

    print >>sys.stderr, 'making k-mer presence table'
    htable = khmer.new_hashbits(args.ksize, args.min_tablesize, args.n_tables)

    for _, filename in enumerate(args.input_filenames):
        print >>sys.stderr, 'consuming input', filename
        htable.consume_fasta_and_tag(filename)

    fp_rate = khmer.calc_expected_collisions(htable)
    print >>sys.stderr, 'fp rate estimated to be %1.3f' % fp_rate
    if fp_rate > 0.15:          # 0.18 is ACTUAL MAX. Do not change.
        print >> sys.stderr, "**"
        print >> sys.stderr, ("** ERROR: the graph structure is too small for"
                              " this data set.  Increase k-mer presence table "
                              "size/num of tables.")
        print >> sys.stderr, "**"
        if not args.force:
            sys.exit(1)

    # partition-graph

    # do we want to exhaustively traverse the graph?
    stop_big_traversals = args.no_big_traverse
    if stop_big_traversals:
        print >>sys.stderr, '** This script brakes for lumps: ', \
                            'stop_big_traversals is true.'
    else:
        print >>sys.stderr, '** Traverse all the things:', \
                            ' stop_big_traversals is false.'

    #
    # now, partition!
    #

    # divide the tags up into subsets
    divvy = htable.divide_tags_into_subsets(int(args.subset_size))
    n_subsets = len(divvy)
    divvy.append(0)

    # build a queue of tasks:
    worker_q = Queue.Queue()

    # break up the subsets into a list of worker tasks
    for _ in range(0, n_subsets):
        start = divvy[_]
        end = divvy[_ + 1]
        worker_q.put((htable, _, start, end))

    print >>sys.stderr, 'enqueued %d subset tasks' % n_subsets
    open('%s.info' % args.graphbase, 'w').write('%d subsets total\n'
                                                % (n_subsets))

    if n_subsets < args.threads:
        args.threads = n_subsets

    # start threads!
    print >>sys.stderr, 'starting %d threads' % args.threads
    print >>sys.stderr, '---'

    threads = []
    for _ in range(args.threads):
        cur_thread = threading.Thread(target=worker,
                                      args=(worker_q, args.graphbase,
                                            stop_big_traversals))
        threads.append(cur_thread)
        cur_thread.start()

    assert threading.active_count() == args.threads + 1

    print >>sys.stderr, 'done starting threads'

    # wait for threads
    for _ in threads:
        _.join()

    print >>sys.stderr, '---'
    print >>sys.stderr, 'done making subsets! see %s.subset.*.pmap' % \
        (args.graphbase,)

    # merge-partitions

    pmap_files = glob.glob(args.graphbase + '.subset.*.pmap')

    print >>sys.stderr, 'loading %d pmap files (first one: %s)' % \
        (len(pmap_files), pmap_files[0])

    htable = khmer.new_hashbits(args.ksize, 1, 1)

    for pmap_file in pmap_files:
        print >>sys.stderr, 'merging', pmap_file
        htable.merge_subset_from_disk(pmap_file)

    if args.remove_subsets:
        print >>sys.stderr, 'removing pmap files'
        for pmap_file in pmap_files:
            os.unlink(pmap_file)

    # annotate-partitions

    for infile in args.input_filenames:
        print >>sys.stderr, 'outputting partitions for', infile
        outfile = os.path.basename(infile) + '.part'
        part_count = htable.output_partitions(infile, outfile)
        print >>sys.stderr, 'output %d partitions for %s' % (
            part_count, infile)
        print >>sys.stderr, 'partitions are in', outfile
示例#59
0
def main():
    info('filter-abund-single.py', ['counting', 'SeqAn'])
    args = get_parser().parse_args()
    check_input_files(args.datafile, args.force)
    check_space([args.datafile], args.force)
    if args.savetable:
        check_space_for_hashtable(args.n_tables * args.min_tablesize,
                                  args.force)
    report_on_config(args)

    print('making k-mer counting table', file=sys.stderr)
    htable = khmer.new_counting_hash(args.ksize, args.min_tablesize,
                                     args.n_tables)

    # first, load reads into hash table
    rparser = khmer.ReadParser(args.datafile)
    threads = []
    print('consuming input, round 1 --', args.datafile, file=sys.stderr)
    for _ in range(args.threads):
        cur_thread = \
            threading.Thread(
                target=htable.consume_fasta_with_reads_parser,
                args=(rparser, )
            )
        threads.append(cur_thread)
        cur_thread.start()

    for _ in threads:
        _.join()

    if args.report_total_kmers:
        print('Total number of unique k-mers: {0}'.format(
            htable.n_unique_kmers()),
              file=sys.stderr)

    fp_rate = khmer.calc_expected_collisions(htable, args.force)
    print('fp rate estimated to be %1.3f' % fp_rate, file=sys.stderr)

    # now, trim.

    # the filtering function.
    def process_fn(record):
        name = record.name
        seq = record.sequence
        seqN = seq.replace('N', 'A')

        _, trim_at = htable.trim_on_abundance(seqN, args.cutoff)

        if trim_at >= args.ksize:
            # be sure to not to change the 'N's in the trimmed sequence -
            # so, return 'seq' and not 'seqN'.
            return name, seq[:trim_at]

        return None, None

    # the filtering loop
    print('filtering', args.datafile, file=sys.stderr)
    outfile = os.path.basename(args.datafile) + '.abundfilt'
    outfp = open(outfile, 'w')

    tsp = ThreadedSequenceProcessor(process_fn)
    tsp.start(verbose_loader(args.datafile), outfp)

    print('output in', outfile, file=sys.stderr)

    if args.savetable:
        print('Saving k-mer counting table filename',
              args.savetable,
              file=sys.stderr)
        print('...saving to', args.savetable, file=sys.stderr)
        htable.save(args.savetable)
    print('wrote to: ', outfile, file=sys.stderr)