def __init__(self, km, actuated_pose, goal_pose, controlled_symbols, weight_override=None, draw_fn=None): eef = actuated_pose goal_pos_error = gm.norm(gm.pos_of(eef) - gm.pos_of(goal_pose)) self.eef_rot = eef[:3, :3] self.goal_rot = goal_pose[:3, :3] self.rot_error_matrix = self.eef_rot - self.goal_rot goal_rot_error = gm.norm(self.rot_error_matrix) rot_align_scale = gm.exp(-3 * goal_rot_error) goal_constraints = {'align position': SC(-goal_pos_error * rot_align_scale, -goal_pos_error * rot_align_scale, 10, goal_pos_error), 'align rotation': SC(-goal_rot_error, -goal_rot_error, 1, goal_rot_error)} self.goal_rot_error = goal_rot_error constraints = km.get_constraints_by_symbols(gm.free_symbols(eef).union(controlled_symbols)) cvs, constraints = generate_controlled_values(constraints, controlled_symbols, weights=weight_override) cvs = depth_weight_controlled_values(km, cvs, exp_factor=1.02) self.draw_fn = draw_fn self.qp = TQPB(constraints, goal_constraints, cvs)
def __init__(self, km, controlled_symbols, resting_pose, camera_path=None): tucking_constraints = {} if resting_pose is not None: tucking_constraints = { f'tuck {s}': SC(p - s, p - s, 1, s) for s, p in resting_pose.items() } # print('Tuck state:\n {}\nTucking constraints:\n {}'.format('\n '.join(['{}: {}'.format(k, v) for k, v in self._resting_pose.items()]), '\n '.join(tucking_constraints.keys()))) # tucking_constraints.update(self.taxi_constraints) self.use_camera = camera_path is not None if camera_path is not None: self._poi_pos = gm.Symbol('poi') poi = gm.point3(1.5, 0.5, 0.0) + gm.vector3( 0, self._poi_pos * 2.0, 0) camera = km.get_data(camera_path) cam_to_poi = poi - gm.pos_of(camera.pose) lookat_dot = 1 - gm.dot_product(gm.x_of(camera.pose), cam_to_poi) / gm.norm(cam_to_poi) tucking_constraints['sweeping gaze'] = SC(-lookat_dot * 5, -lookat_dot * 5, 1, lookat_dot) symbols = set() for c in tucking_constraints.values(): symbols |= gm.free_symbols(c.expr) joint_symbols = { s for s in symbols if gm.get_symbol_type(s) != gm.TYPE_UNKNOWN } controlled_symbols = {gm.DiffSymbol(s) for s in joint_symbols} hard_constraints = km.get_constraints_by_symbols( symbols.union(controlled_symbols)) controlled_values, hard_constraints = generate_controlled_values( hard_constraints, controlled_symbols) controlled_values = depth_weight_controlled_values( km, controlled_values) self.qp = TQPB(hard_constraints, tucking_constraints, controlled_values) self._start = Time.now()
def test_revolute_and_continuous_joint(self): ks = ArticulationModel() a = Position('a') b = Position('b') c = Position('c') parent_pose = frame3_axis_angle(vector3(0,1,0), a, point3(0, b, 5)) joint_transform = translation3(7, -5, 33) axis = vector3(1, -3, 7) axis = axis / norm(axis) position = c child_pose = parent_pose * joint_transform * rotation3_axis_angle(axis, position) ks.apply_operation('create parent', CreateComplexObject(Path('parent'), KinematicLink('', parent_pose))) ks.apply_operation('create child', CreateComplexObject(Path('child'), KinematicLink('', se.eye(4)))) self.assertTrue(ks.has_data('parent/pose')) self.assertTrue(ks.has_data('child/pose')) ks.apply_operation('connect parent child', SetRevoluteJoint(Path('parent/pose'), Path('child/pose'), Path('fixed_joint'), joint_transform, axis, position, -1, 2, 0.5)) self.assertTrue(ks.has_data('fixed_joint')) self.assertEquals(ks.get_data('child/pose'), child_pose) ks.remove_operation('connect parent child') ks.apply_operation('connect parent child', SetContinuousJoint(Path('parent/pose'), Path('child/pose'), Path('fixed_joint'), joint_transform, axis, position, 0.5))
collision_world.update_world(start_state) vis.begin_draw_cycle('ik_solution') vis.draw_world('ik_solution', collision_world) vis.render('ik_solution') print(f'IK error: {ik_err}') def gen_dv_cvs(km, constraints, controlled_symbols): cvs, constraints = generate_controlled_values(constraints, controlled_symbols) cvs = depth_weight_controlled_values(km, cvs, exp_factor=1.02) print('\n'.join(f'{cv.symbol}: {cv.weight_id}' for _, cv in sorted(cvs.items()))) return cvs, constraints dyn_goal_pos_error = gm.norm(gm.pos_of(eef.pose) - gm.pos_of(goal_pose)) dyn_goal_rot_error = gm.norm(eef.pose[:3, :3] - goal_pose[:3, :3]) o_vars, bounds, _ = static_var_bounds(km, gm.free_symbols(handle.pose)) lead_goal_constraints = {f'open_object {s}': SC(ub - s, ub - s, 1, s) for s, (_, ub) in zip(o_vars, bounds)} follower_goal_constraints = {'keep position': SC(-dyn_goal_pos_error, -dyn_goal_pos_error, 10, dyn_goal_pos_error), 'keep rotation': SC(-dyn_goal_rot_error, -dyn_goal_rot_error, 1, dyn_goal_rot_error)} solver = CascadingQP(km, lead_goal_constraints, follower_goal_constraints, f_gen_follower_cvs=gen_dv_cvs,
def behavior_update(self): state_count = 0 while not rospy.is_shutdown() and not self._kys: loop_start = rospy.Time.now() with self._state_lock: if self._robot_state_update_count <= state_count: rospy.sleep(0.01) continue state_count = self._robot_state_update_count if self.controller is not None: now = rospy.Time.now() with self._state_lock: deltaT = 0.05 if self._last_controller_update is None else ( now - self._last_controller_update).to_sec() try: command = self.controller.get_cmd(self._state, deltaT=deltaT) except Exception as e: print(traceback.format_exc()) rospy.signal_shutdown('die lol') self.robot_command_processor.send_command(command) self._last_controller_update = now # Lets not confuse the tracker if self._phase != 'opening' and self._last_external_cmd_msg is not None: # Ensure that velocities are assumed to be 0 when not operating anything self._last_external_cmd_msg.value = [0] * len( self._last_external_cmd_msg.value) self.pub_external_command.publish(self._last_external_cmd_msg) self._last_external_cmd_msg = None if self._phase == 'idle': # if there is no controller, instantiate idle # check for new target # -> open gripper # instantiate 6d controller # switch to "grasping" if self.controller is None: self.gripper_wrapper.sync_set_gripper_position(0.07) self.controller = self._idle_controller with self._state_lock: for s, p in self._target_map.items(): if s in self._state and self._state[ s] < self._var_upper_bound[ s] * self.monitoring_threshold: # Some thing in the scene is closed self._current_target = p print(f'New target is {self._current_target}') self.gripper_wrapper.sync_set_gripper_position( 0.07) self._last_controller_update = None print('Gripper is open. Proceeding to grasp...') draw_fn = None eef_pose = self.km.get_data(self.eef_path).pose if self.visualizer is not None: self.visualizer.begin_draw_cycle('grasp pose') self.visualizer.draw_poses( 'grasp pose', np.eye(4), 0.2, 0.01, [ gm.subs(self._grasp_poses[p], self._state) ]) self.visualizer.render('grasp pose') def draw_fn(state): self.visualizer.begin_draw_cycle( 'debug_grasp') self.visualizer.draw_poses( 'debug_grasp', np.eye(4), 1.0, 0.01, [ gm.subs(eef_pose, state), gm.subs(self._grasp_poses[p], state) ]) self.visualizer.render('debug_grasp') # print('\n'.join(f'{s}: {v}' for s, v in state.items())) self.controller = SixDPoseController( self.km, eef_pose, self._grasp_poses[p], self.controlled_symbols, self.weights, draw_fn) self._phase = 'grasping' print(f'Now entering {self._phase} state') break else: print( 'None of the monitored symbols are closed:\n {}'. format('\n '.join( f'{self._state[s]} < {self._var_upper_bound[s]}' for s in self._target_map.keys() if s in self._state))) elif self._phase == 'grasping': # check if grasp is acheived # -> close gripper # instantiate cascading controller # switch to "opening" # if there is no more command but the goal error is too great -> "homing" if self.controller.equilibrium_reached(0.03, -0.03): if self.controller.current_error() > 0.01: self.controller = self._idle_controller self._phase = 'homing' print(f'Now entering {self._phase} state') else: print('Closing gripper...') self.gripper_wrapper.sync_set_gripper_position(0, 80) print('Generating opening controller') eef = self.km.get_data(self.eef_path) obj = self.km.get_data(self._current_target) with self._state_lock: static_eef_pose = gm.subs(eef.pose, self._state) static_object_pose = gm.subs(obj.pose, self._state) offset_pose = np_inverse_frame(static_object_pose).dot( static_eef_pose) print(offset_pose) goal_pose = gm.dot(obj.pose, gm.Matrix(offset_pose)) goal_pos_error = gm.norm( gm.pos_of(eef.pose) - gm.pos_of(goal_pose)) goal_rot_error = gm.norm(eef.pose[:3, :3] - goal_pose[:3, :3]) target_symbols = self._target_body_map[ self._current_target] lead_goal_constraints = { f'open_{s}': SC(self._var_upper_bound[s] - s, 1000, 1, s) for s in target_symbols if s in self._var_upper_bound } for n, c in lead_goal_constraints.items(): print(f'{n}: {c}') follower_goal_constraints = { 'keep position': SC(-goal_pos_error, -goal_pos_error, 10, goal_pos_error), 'keep rotation': SC(-goal_rot_error, -goal_rot_error, 1, goal_rot_error) } blacklist = { gm.Velocity(Path('pr2/torso_lift_joint')) }.union({ gm.DiffSymbol(s) for s in gm.free_symbols(obj.pose) if 'location' in str(s) }) # blacklist = {gm.DiffSymbol(s) for s in gm.free_symbols(obj.pose) if 'location' in str(s)} self.controller = CascadingQP( self.km, lead_goal_constraints, follower_goal_constraints, f_gen_follower_cvs=gen_dv_cvs, controls_blacklist=blacklist, t_follower=GQPB, visualizer=None # self.visualizer ) print(self.controller) # def debug_draw(vis, state, cmd): # vis.begin_draw_cycle('lol') # vis.draw_poses('lol', np.eye(4), 0.2, 0.01, # [gm.subs(goal_pose, state), # gm.subs(eef.pose, state)]) # vis.render('lol') # self.controller.follower_qp._cb_draw = debug_draw # self.gripper_wrapper.sync_set_gripper_position(0.07) # rospy.signal_shutdown('die lol') # return self._last_controller_update = None self._phase = 'opening' print(f'Now entering {self._phase} state') elif self._phase == 'opening': # Wait for monitored symbols to be in open position # -> open gripper # generate 6d retraction goal: -10cm in tool frame # spawn 6d controller # switch to "retracting" # self.visualizer.begin_draw_cycle('world state') # with self._state_lock: # self._world.update_world(self._state) # self.visualizer.draw_world('world state', self._world, b=0) # self.visualizer.render('world state') external_command = { s: v for s, v in command.items() if s not in self.controlled_symbols } ext_msg = ValueMapMsg() ext_msg.header.stamp = now ext_msg.symbol, ext_msg.value = zip( *[(str(s), v) for s, v in external_command.items()]) self.pub_external_command.publish(ext_msg) self._last_external_cmd_msg = ext_msg with self._state_lock: current_external_error = { s: self._state[s] for s in self._target_body_map[self._current_target] } print('Current error state:\n {}'.format('\n '.join( [f'{s}: {v}' for s, v in current_external_error.items()]))) gripper_err = self.gripper_wrapper.get_latest_error() # if gripper_err < 0.0005: # Grasped object is thinner than 5mm aka we lost it # self.controller = self._idle_controller # self._phase = 'homing' # print(f'Grasped object seems to have slipped ({gripper_err}). Returning to home...') # return if min([ v >= self._var_upper_bound[s] * self.acceptance_threshold for s, v in current_external_error.items() ]): print('Target fulfilled. Setting it to None') self._current_target = None eef = self.km.get_data(self.eef_path) with self._state_lock: static_eef_pose = gm.subs(eef.pose, self._state) goal_pose = static_eef_pose.dot( np.array([[1, 0, 0, -0.12], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])) self.controller = SixDPoseController( self.km, eef.pose, goal_pose, self.controlled_symbols, self.weights) self.gripper_wrapper.sync_set_gripper_position(0.07) self._last_controller_update = None self._phase = 'retracting' print(f'Now entering {self._phase} state') else: remainder = (1 / 3) - (rospy.Time.now() - loop_start).to_sec() if remainder > 0: rospy.sleep(remainder) elif self._phase == 'retracting': # Wait for retraction to complete (Currently just skipping) # -> spawn idle controller # switch to "homing" if self.controller.equilibrium_reached(0.035, -0.035): self.controller = self._idle_controller self._phase = 'homing' print(f'Now entering {self._phase} state') elif self._phase == 'homing': # Wait for idle controller to have somewhat low error # -> switch to "idle" if self.controller is None: self.gripper_wrapper.sync_set_gripper_position(0.07) self.controller = self._idle_controller continue if self.controller.equilibrium_reached(0.1, -0.1): self._phase = 'idle' print(f'Now entering {self._phase} state') else: raise Exception(f'Unknown state "{self._phase}')
def create_nobilia_shelf(km, prefix, origin_pose=gm.eye(4), parent_path=Path('world')): km.apply_operation( f'create {prefix}', ExecFunction(prefix, MarkedArticulatedObject, str(prefix))) shelf_height = 0.72 shelf_width = 0.6 shelf_body_depth = 0.35 wall_width = 0.016 l_prefix = prefix + ('links', ) geom_body_wall_l = Box( l_prefix + ('body', ), gm.translation3(0, 0.5 * (shelf_width - wall_width), 0), gm.vector3(shelf_body_depth, wall_width, shelf_height)) geom_body_wall_r = Box( l_prefix + ('body', ), gm.translation3(0, -0.5 * (shelf_width - wall_width), 0), gm.vector3(shelf_body_depth, wall_width, shelf_height)) geom_body_ceiling = Box( l_prefix + ('body', ), gm.translation3(0, 0, 0.5 * (shelf_height - wall_width)), gm.vector3(shelf_body_depth, shelf_width - wall_width, wall_width)) geom_body_floor = Box( l_prefix + ('body', ), gm.translation3(0, 0, -0.5 * (shelf_height - wall_width)), gm.vector3(shelf_body_depth, shelf_width - wall_width, wall_width)) geom_body_shelf_1 = Box( l_prefix + ('body', ), gm.translation3(0.02, 0, -0.2 * (shelf_height - wall_width)), gm.vector3(shelf_body_depth - 0.04, shelf_width - wall_width, wall_width)) geom_body_shelf_2 = Box( l_prefix + ('body', ), gm.translation3(0.02, 0, 0.2 * (shelf_height - wall_width)), gm.vector3(shelf_body_depth - 0.04, shelf_width - wall_width, wall_width)) geom_body_back = Box( l_prefix + ('body', ), gm.translation3(0.5 * (shelf_body_depth - 0.005), 0, 0), gm.vector3(0.005, shelf_width - 2 * wall_width, shelf_height - 2 * wall_width)) shelf_geom = [ geom_body_wall_l, geom_body_wall_r, geom_body_ceiling, geom_body_floor, geom_body_back, geom_body_shelf_1, geom_body_shelf_2 ] rb_body = RigidBody(parent_path, origin_pose, geometry=dict(enumerate(shelf_geom)), collision=dict(enumerate(shelf_geom))) geom_panel_top = Box(l_prefix + ('panel_top', ), gm.eye(4), gm.vector3(0.357, 0.595, wall_width)) geom_panel_bottom = Box(l_prefix + ('panel_bottom', ), gm.eye(4), gm.vector3(0.357, 0.595, wall_width)) handle_width = 0.16 handle_depth = 0.05 handle_diameter = 0.012 geom_handle_r = Box( l_prefix + ('handle', ), gm.translation3(0.5 * handle_depth, 0.5 * (handle_width - handle_diameter), 0), gm.vector3(handle_depth, handle_diameter, handle_diameter)) geom_handle_l = Box( l_prefix + ('handle', ), gm.translation3(0.5 * handle_depth, -0.5 * (handle_width - handle_diameter), 0), gm.vector3(handle_depth, handle_diameter, handle_diameter)) geom_handle_bar = Box( l_prefix + ('handle', ), gm.translation3(handle_depth - 0.5 * handle_diameter, 0, 0), gm.vector3(handle_diameter, handle_width - handle_diameter, handle_diameter)) handle_geom = [geom_handle_l, geom_handle_r, geom_handle_bar] # Sketch of mechanism # # T ---- a # ---- \ Z # b ..... V \ # | ...... d # B | ------ # c ------ # L # # Diagonal V is virtual # # # Angles: # a -> alpha (given) # b -> gamma_1 + gamma_2 = gamma # c -> don't care # d -> delta_1 + delta_2 = delta # opening_position = gm.Position(prefix + ('door', )) # Calibration results # # Solution top hinge: cost = 0.03709980624159568 [ 0.08762252 -0.01433833 0.2858676 0.00871125] # Solution bottom hinge: cost = 0.025004236048128934 [ 0.1072496 -0.01232362 0.27271013 0.00489996] # Added 180 deg rotation due to -x being the forward facing side in this model top_hinge_in_body_marker = gm.translation3(0.08762252 - 0.015, 0, -0.01433833) top_panel_marker_in_top_hinge = gm.translation3(0.2858676 - 0.003, -wall_width + 0.0025, 0.00871125 - 0.003) front_hinge_in_top_panel_maker = gm.translation3(0.1072496 - 0.02, 0, -0.01232362 + 0.007) bottom_panel_marker_in_front_hinge = gm.translation3( 0.27271013, 0, 0.00489996) # Top hinge - Data taken from observation body_marker_in_body = gm.dot( gm.rotation3_axis_angle(gm.vector3(0, 0, 1), math.pi), gm.translation3(0.5 * shelf_body_depth - 0.062, -0.5 * shelf_width + 0.078, 0.5 * shelf_height)) top_panel_marker_in_top_panel = gm.translation3( geom_panel_top.scale[0] * 0.5 - 0.062, -geom_panel_top.scale[1] * 0.5 + 0.062, geom_panel_top.scale[2] * 0.5) bottom_panel_marker_in_bottom_panel = gm.translation3( geom_panel_bottom.scale[0] * 0.5 - 0.062, -geom_panel_bottom.scale[1] * 0.5 + 0.062, geom_panel_bottom.scale[2] * 0.5) top_hinge_in_body = gm.dot(body_marker_in_body, top_hinge_in_body_marker) top_panel_in_top_hinge = gm.dot( top_panel_marker_in_top_hinge, gm.inverse_frame(top_panel_marker_in_top_panel)) front_hinge_in_top_panel = gm.dot(top_panel_marker_in_top_panel, front_hinge_in_top_panel_maker) bottom_panel_in_front_hinge = gm.dot( bottom_panel_marker_in_front_hinge, gm.inverse_frame(bottom_panel_marker_in_bottom_panel)) # Point a in body reference frame point_a = gm.dot(gm.diag(1, 0, 1, 1), gm.pos_of(top_hinge_in_body)) point_d = gm.point3(-shelf_body_depth * 0.5 + 0.09, 0, shelf_height * 0.5 - 0.192) # point_d = gm.point3(-shelf_body_depth * 0.5 + gm.Symbol('point_d_x'), 0, shelf_height * 0.5 - gm.Symbol('point_d_z')) # Zero alpha along the vertical axis vec_a_to_d = gm.dot(point_d - point_a) alpha = gm.atan2(vec_a_to_d[0], -vec_a_to_d[2]) + opening_position top_panel_in_body = gm.dot( top_hinge_in_body, # Translation hinge to body frame gm.rotation3_axis_angle(gm.vector3(0, 1, 0), -opening_position + 0.5 * math.pi), # Hinge around y top_panel_in_top_hinge) front_hinge_in_body = gm.dot(top_panel_in_body, front_hinge_in_top_panel) # Point b in top panel reference frame point_b_in_top_hinge = gm.pos_of( gm.dot(gm.diag(1, 0, 1, 1), front_hinge_in_top_panel, top_panel_in_top_hinge)) point_b = gm.dot(gm.diag(1, 0, 1, 1), gm.pos_of(front_hinge_in_body)) # Hinge lift arm in body reference frame point_c_in_bottom_panel = gm.dot( gm.diag(1, 0, 1, 1), bottom_panel_marker_in_bottom_panel, gm.point3(-0.094, -0.034, -0.072), # gm.point3(-gm.Symbol('point_c_x'), -0.034, -gm.Symbol('point_c_z')) ) point_c_in_front_hinge = gm.dot( gm.diag(1, 0, 1, 1), gm.dot(bottom_panel_in_front_hinge, point_c_in_bottom_panel)) length_z = gm.norm(point_a - point_d) vec_a_to_b = point_b - point_a length_t = gm.norm(vec_a_to_b) length_b = gm.norm(point_c_in_front_hinge[:3]) # length_l = gm.Symbol('length_l') # 0.34 length_l = 0.372 vec_b_to_d = point_d - point_b length_v = gm.norm(vec_b_to_d) gamma_1 = inner_triangle_angle(length_t, length_v, length_z) gamma_2 = inner_triangle_angle(length_b, length_v, length_l) top_panel_offset_angle = gm.atan2(point_b_in_top_hinge[2], point_b_in_top_hinge[0]) bottom_offset_angle = gm.atan2(point_c_in_front_hinge[2], point_c_in_front_hinge[0]) gamma = gamma_1 + gamma_2 rb_panel_top = RigidBody(l_prefix + ('body', ), gm.dot(rb_body.pose, top_panel_in_body), top_panel_in_body, geometry={0: geom_panel_top}, collision={0: geom_panel_top}) # old offset: 0.5 * geom_panel_top.scale[2] + 0.03 tf_bottom_panel = gm.dot( front_hinge_in_top_panel, gm.rotation3_axis_angle( gm.vector3(0, 1, 0), math.pi + bottom_offset_angle - top_panel_offset_angle), gm.rotation3_axis_angle(gm.vector3(0, -1, 0), gamma), bottom_panel_in_front_hinge) rb_panel_bottom = RigidBody(l_prefix + ('panel_top', ), gm.dot(rb_panel_top.pose, tf_bottom_panel), tf_bottom_panel, geometry={0: geom_panel_bottom}, collision={0: geom_panel_bottom}) handle_transform = gm.dot( gm.translation3(geom_panel_bottom.scale[0] * 0.5 - 0.08, 0, 0.5 * wall_width), gm.rotation3_axis_angle(gm.vector3(0, 1, 0), -math.pi * 0.5)) rb_handle = RigidBody(l_prefix + ('panel_bottom', ), gm.dot(rb_panel_bottom.pose, handle_transform), handle_transform, geometry={x: g for x, g in enumerate(handle_geom)}, collision={x: g for x, g in enumerate(handle_geom)}) # Only debugging point_c = gm.dot(rb_panel_bottom.pose, point_c_in_bottom_panel) vec_b_to_c = point_c - point_b km.apply_operation(f'create {prefix}/links/body', CreateValue(rb_panel_top.parent, rb_body)) km.apply_operation(f'create {prefix}/links/panel_top', CreateValue(rb_panel_bottom.parent, rb_panel_top)) km.apply_operation( f'create {prefix}/links/panel_bottom', CreateValue(l_prefix + ('panel_bottom', ), rb_panel_bottom)) km.apply_operation(f'create {prefix}/links/handle', CreateValue(l_prefix + ('handle', ), rb_handle)) km.apply_operation( f'create {prefix}/joints/hinge', ExecFunction( prefix + Path('joints/hinge'), RevoluteJoint, CPath(rb_panel_top.parent), CPath(rb_panel_bottom.parent), opening_position, gm.vector3(0, 1, 0), gm.eye(4), 0, 1.84, **{ f'{opening_position}': Constraint(0 - opening_position, 1.84 - opening_position, opening_position), f'{gm.DiffSymbol(opening_position)}': Constraint(-0.25, 0.25, gm.DiffSymbol(opening_position)) })) m_prefix = prefix + ('markers', ) km.apply_operation( f'create {prefix}/markers/body', ExecFunction(m_prefix + ('body', ), Frame, CPath(l_prefix + ('body', )), gm.dot(rb_body.pose, body_marker_in_body), body_marker_in_body)) km.apply_operation( f'create {prefix}/markers/top_panel', ExecFunction(m_prefix + ('top_panel', ), Frame, CPath(l_prefix + ('panel_top', )), gm.dot(rb_panel_top.pose, top_panel_marker_in_top_panel), top_panel_marker_in_top_panel)) km.apply_operation( f'create {prefix}/markers/bottom_panel', ExecFunction( m_prefix + ('bottom_panel', ), Frame, CPath(l_prefix + ('panel_bottom', )), gm.dot(rb_panel_bottom.pose, bottom_panel_marker_in_bottom_panel), bottom_panel_marker_in_bottom_panel)) return NobiliaDebug( [ top_hinge_in_body, gm.dot( top_hinge_in_body, gm.rotation3_axis_angle(gm.vector3(0, 1, 0), -opening_position + 0.5 * math.pi), top_panel_in_top_hinge, front_hinge_in_top_panel), body_marker_in_body, gm.dot(rb_panel_top.pose, top_panel_marker_in_top_panel), gm.dot(rb_panel_bottom.pose, bottom_panel_marker_in_bottom_panel) ], [(point_a, vec_a_to_d), (point_a, vec_a_to_b), (point_b, vec_b_to_d), (point_b, vec_b_to_c)], { 'gamma_1': gamma_1, 'gamma_1 check_dot': gamma_1 - gm.acos( gm.dot_product(-vec_a_to_b / gm.norm(vec_a_to_b), vec_b_to_d / gm.norm(vec_b_to_d))), 'gamma_1 check_cos': gamma_1 - inner_triangle_angle( gm.norm(vec_a_to_b), gm.norm(vec_b_to_d), gm.norm(vec_a_to_d)), 'gamma_2': gamma_2, 'gamma_2 check_dot': gamma_2 - gm.acos( gm.dot_product(vec_b_to_c / gm.norm(vec_b_to_c), vec_b_to_d / gm.norm(vec_b_to_d))), 'length_v': length_v, 'length_b': length_b, 'length_l': length_l, 'position': opening_position, 'alpha': alpha, 'dist c d': gm.norm(point_d - point_c) }, { gm.Symbol('point_c_x'): 0.094, gm.Symbol('point_c_z'): 0.072, gm.Symbol('point_d_x'): 0.09, gm.Symbol('point_d_z'): 0.192, gm.Symbol('length_l'): 0.372 })
def generate_push_closing(km, grounding_state, controlled_symbols, eef_pose, obj_pose, eef_path, obj_path, nav_method='cross', cp_offset=0, static_symbols=set()): # CONTACT GEOMETRY robot_cp, object_cp, contact_normal = contact_geometry( eef_pose, obj_pose, eef_path, obj_path) object_cp = object_cp - contact_normal * cp_offset geom_distance = gm.dot_product(contact_normal, robot_cp - object_cp) coll_world = km.get_active_geometry(gm.free_symbols(geom_distance)) # GEOMETRY NAVIGATION LOGIC # This is exploiting task knowledge which makes this function inflexible. contact_grad = sum([ sign(-grounding_state[s]) * gm.vector3(gm.diff(object_cp[0], s), gm.diff(object_cp[1], s), gm.diff(object_cp[2], s)) for s in gm.free_symbols(obj_pose) if s not in static_symbols ], gm.vector3(0, 0, 0)) neutral_tangent = gm.cross(contact_grad, contact_normal) active_tangent = gm.cross(neutral_tangent, contact_normal) contact_constraints, in_contact = generate_contact_model( robot_cp, controlled_symbols, object_cp, contact_normal, gm.free_symbols(obj_pose)) target_pos = None if nav_method == 'linear': geom_distance = gm.norm(object_cp + active_tangent * geom_distance + contact_grad * 0.05 - robot_cp) elif nav_method == 'cubic': dist_scaling = 2**(-0.5 * ((geom_distance - 0.2) / (0.2 * 0.2))**2) geom_distance = gm.norm(object_cp + active_tangent * dist_scaling - robot_cp) elif nav_method == 'cross': geom_distance = gm.norm(object_cp + active_tangent * gm.norm(neutral_tangent) + contact_grad * 0.05 - robot_cp) elif nav_method == 'cross_deep': geom_distance = gm.norm(object_cp + active_tangent * gm.norm(neutral_tangent) + contact_grad * -gm.dot_product(contact_normal, contact_grad) - robot_cp) elif nav_method == 'none' or nav_method is None: pass elif nav_method == 'proj': obj_cp_dist = gm.dot_product(contact_normal, object_cp - gm.pos_of(obj_pose)) target_pos = gm.pos_of( obj_pose ) + contact_normal * obj_cp_dist - contact_normal * 0.02 # Drive into the surface geom_distance = gm.norm(robot_cp - target_pos) contact_relative_pos = gm.dot(gm.rot_of(obj_pose), robot_cp - gm.pos_of(obj_pose)) contact_relative_vel = gm.vector3( sum([gm.diff(contact_relative_pos[0], s) for s in controlled_symbols], 0), sum([gm.diff(contact_relative_pos[1], s) for s in controlled_symbols], 0), sum([gm.diff(contact_relative_pos[2], s) for s in controlled_symbols], 0)) # PUSH CONSTRAINT GENERATION constraints = km.get_constraints_by_symbols( gm.free_symbols(geom_distance).union(controlled_symbols)) constraints.update(contact_constraints) # for x, n in enumerate('xyz'): # constraints[f'zero tangent vel_{n}'] = Constraint((1 - in_contact) * -1e3, # (1 - in_contact) * 1e3, contact_relative_pos[x] * (1.0 + 0.1 * x)) def debug_draw(vis, state, cmd): vis.begin_draw_cycle('debug_vecs') s_object_cp = gm.subs(object_cp, state) s_neutral_tangent = gm.subs(neutral_tangent, state) vis.draw_vector('debug_vecs', s_object_cp, gm.subs(contact_grad, state), r=0, b=0) vis.draw_vector('debug_vecs', s_object_cp, gm.subs(active_tangent, state), r=0, b=1) vis.draw_vector('debug_vecs', s_object_cp, gm.subs(neutral_tangent, state), r=1, g=1, b=0) if target_pos is not None: vis.draw_sphere('debug_vecs', gm.subs(target_pos, state), 0.01, r=0, b=1) # print(f'{gm.norm(gm.subs(contact_normal, state))}') # vis.draw_vector('debug_vecs', s_object_cp, s_ortho_vel_vec, r=1, b=0) vis.render('debug_vecs') return constraints, geom_distance, coll_world, PushingInternals( robot_cp, contact_normal, contact_relative_pos, contact_relative_vel, debug_draw)
def __init__(self, km, actuated_object_path, target_object_path, controlled_symbols, start_state, camera_path=None, navigation_method='cross', visualizer=None, weight_override=None, collision_avoidance_paths=None): print(f'{actuated_object_path}\n{target_object_path}') actuated_object = km.get_data(actuated_object_path) target_object = km.get_data(target_object_path) all_controlled_symbols = controlled_symbols.union({ gm.DiffSymbol(j) for j in gm.free_symbols(target_object.pose) if 'location' not in str(j) }) static_symbols = { s for s in gm.free_symbols(target_object.pose) if 'location' in str(s) } # Generate push problem constraints, \ geom_distance, \ coll_world, \ self.p_internals = generate_push_closing(km, start_state, all_controlled_symbols, actuated_object.pose, target_object.pose, actuated_object_path, target_object_path, navigation_method, static_symbols=static_symbols) start_state.update({s: 0.0 for s in gm.free_symbols(coll_world)}) weight_override = {} if weight_override is None else weight_override controlled_values, \ constraints = generate_controlled_values(constraints, all_controlled_symbols) controlled_values = depth_weight_controlled_values(km, controlled_values, exp_factor=1.1) goal_constraints = { 'reach_point': PIDC(geom_distance, geom_distance, 1, k_i=0.00) } for s, w in weight_override.items(): for cv in controlled_values.values(): if cv.symbol is s: cv.weight_id = w break # CAMERA STUFF if camera_path is not None: camera = km.get_data(camera_path) cam_pos = gm.pos_of(camera.pose) cam_to_obj = gm.pos_of(target_object.pose) - cam_pos cam_forward = gm.dot(camera.pose, gm.vector3(1, 0, 0)) look_goal = 1 - (gm.dot_product(cam_to_obj, cam_forward) / gm.norm(cam_to_obj)) goal_constraints['look_at_obj'] = SC(-look_goal, -look_goal, 1, look_goal) # GOAL CONSTAINT GENERATION # 'avoid_collisions': SC.from_constraint(closest_distance_constraint_world(eef_pose, eef_path[:-1], 0.03), 100) # } if collision_avoidance_paths is not None: for p in collision_avoidance_paths: obj = km.get_data(p) goal_constraints[f'avoid_collision {p}'] = SC.from_constraint( closest_distance_constraint(actuated_object.pose, obj.pose, actuated_object_path, p, 0.01), 100) goal_constraints.update({ f'open_object_{x}': PIDC(s, s, 1) for x, s in enumerate(gm.free_symbols(target_object.pose)) }) self.look_goal = look_goal if camera_path is not None else None self.in_contact = gm.less_than(geom_distance, 0.01) self.controlled_values = controlled_values self.geom_distance = geom_distance self.qpb = GQPB(coll_world, constraints, goal_constraints, controlled_values, visualizer=visualizer) self.qpb._cb_draw = self.p_internals.f_debug_draw
def post_physics_update(self, simulator, deltaT): """Implements post physics step behavior. :type simulator: BasicSimulator :type deltaT: float """ if not self._enabled: return self._last_update += deltaT if self._last_update >= self._update_wait: self._last_update = 0 cf_tuple = self.multibody.get_link_state(self.camera_link).worldFrame camera_frame = gm.frame3_quaternion(cf_tuple.position.x, cf_tuple.position.y, cf_tuple.position.z, *cf_tuple.quaternion) cov_proj = gm.rot_of(camera_frame)[:3, :3] inv_cov_proj = cov_proj.T out = PSAMsg() if self.visualizer is not None: self.visualizer.begin_draw_cycle() poses = [] for name, body in simulator.bodies.items(): if body == self.multibody: continue if isinstance(body, MultiBody): poses_to_process = [('{}/{}'.format(name, l), body.get_link_state(l).worldFrame) for l in body.links] else: poses_to_process = [(name, body.pose())] for pname, pose in poses_to_process: if not pname in self.message_templates: msg = PoseStampedMsg() msg.header.frame_id = pname self.message_templates[pname] = msg else: msg = self.message_templates[pname] obj_pos = gm.point3(*pose.position) c2o = obj_pos - gm.pos_of(camera_frame) dist = gm.norm(c2o) if dist < self.far and dist > self.near and gm.dot_product(c2o, gm.x_of(camera_frame)) > gm.cos(self.fov * 0.5) * dist: noise = 2 ** (self.noise_exp * dist) - 1 (n_quat, ) = np_random_quat_normal(1, 0, noise) (n_trans, ) = np_random_normal_offset(1, 0, noise) n_pose = pb.Transform(pb.Quaternion(*pose.quaternion), pb.Vector3(*pose.position)) *\ pb.Transform(pb.Quaternion(*n_quat), pb.Vector3(*n_trans[:3])) if self.visualizer is not None: poses.append(transform_to_matrix(n_pose)) msg.pose.position.x = n_pose.origin.x msg.pose.position.y = n_pose.origin.y msg.pose.position.z = n_pose.origin.z msg.pose.orientation.x = n_pose.rotation.x msg.pose.orientation.y = n_pose.rotation.y msg.pose.orientation.z = n_pose.rotation.z msg.pose.orientation.w = n_pose.rotation.w out.poses.append(msg) self.publisher.publish(out) if self.visualizer is not None: self.visualizer.draw_poses('debug', gm.se.eye(4), 0.1, 0.02, poses) self.visualizer.render()
collision_avoidance_paths=active_parts_to_avoid) if robot in start_poses: start_state.update({ gm.Position(Path(robot) + (k, )): v for k, v in start_poses[robot].items() }) start_state.update({ c.symbol: 0.0 for c in pushing_controller.controlled_values.values() }) # start_state.update({s: 1.84 for s in gm.free_symbols(obj.pose)}) start_state.update({s: 0.4 for s in gm.free_symbols(obj.pose)}) printed_exprs['relative_vel'] = gm.norm( pushing_controller.p_internals.relative_pos) integrator = CommandIntegrator(pushing_controller.qpb, integration_rules, equilibrium=0.0004, start_state=start_state, recorded_terms={ 'distance': pushing_controller.geom_distance, 'gaze_align': pushing_controller.look_goal, 'in contact': pushing_controller.in_contact, 'location_x': base_joint.x_pos, 'location_y': base_joint.y_pos, 'rotation_a': base_joint.a_pos
def _generate_pose_constraints(self, str_path, model): with self.lock: if str_path in self.tracked_poses: align_rotation = '{} align rotation'.format(str_path) align_position = '{} align position'.format(str_path) if model is not None: m_free_symbols = cm.free_symbols(model.pose) if len(m_free_symbols) > 0: te = self.tracked_poses[str_path] self.joints |= m_free_symbols self.joint_aliases = {s: str(s) for s in self.joints} r_dist = norm( cm.rot_of(model.pose) - cm.rot_of(te.pose)) self.soft_constraints[align_rotation] = SC( -r_dist, -r_dist, 1, r_dist) # print(align_position) # print(model.pose) dist = norm(cm.pos_of(model.pose) - cm.pos_of(te.pose)) # print('Distance expression:\n{}'.format(dist)) # print('Distance expression symbol overlap:\n{}'.format(m_free_symbols.intersection(cm.free_symbols(dist)))) # for s in m_free_symbols: # print('Diff w.r.t {}:\n{}'.format(s, cm.diff(dist, s))) self.soft_constraints[align_position] = SC( -dist, -dist, 1, dist) self.generate_opt_problem() # Avoid crashes due to insufficient perception data. This is not fully correct. if str_path in self._unintialized_poses: state = self.integrator.state.copy( ) if self.integrator is not None else {} state.update({ s: 0.0 for s in m_free_symbols if s not in state }) null_pose = cm.subs(model.pose, state) pos = cm.pos_of(null_pose) quat = real_quat_from_matrix(cm.rot_of(null_pose)) msg = PoseMsg() msg.position.x = pos[0] msg.position.y = pos[1] msg.position.z = pos[2] msg.orientation.x = quat[0] msg.orientation.y = quat[1] msg.orientation.z = quat[2] msg.orientation.w = quat[3] te.update_state(msg, self.integrator.state) else: regenerate_problem = False if align_position in self.soft_constraints: del self.soft_constraints[align_position] regenerate_problem = True if align_rotation in self.soft_constraints: del self.soft_constraints[align_rotation] regenerate_problem = True if regenerate_problem: self.generate_opt_problem()
err_ik, q_ik_goal = ik_solve_one_shot(km, eef.pose, ik_goal_start, goal_pose) world.update_world(q_ik_goal) visualizer.begin_draw_cycle('pre_open_world') visualizer.draw_poses('pre_open_world', gm.eye(4), 0.2, 0.01, [ gm.subs(goal_pose, {s: 0 for s in gm.free_symbols(goal_pose)}), gm.subs(eef.pose, q_ik_goal) ]) visualizer.draw_world('pre_open_world', world, g=0.6, b=0.6) visualizer.render('pre_open_world') # Build Door opening problem grasp_err_rot = gm.norm(gm.rot_of(goal_pose - eef.pose).elements()) grasp_err_lin = gm.norm(gm.pos_of(goal_pose - eef.pose)) active_symbols = {s for s in gm.free_symbols(eef.pose) if gm.get_symbol_type(s) == gm.TYPE_POSITION}\ .union({door_position, handle_position}) controlled_symbols = {gm.DiffSymbol(s) for s in active_symbols} controlled_values, constraints = generate_controlled_values( km.get_constraints_by_symbols( controlled_symbols.union(active_symbols)), controlled_symbols) # Static grasp goal goal_grasp_lin = SoftConstraint(-grasp_err_lin, -grasp_err_lin, 100.0, grasp_err_lin) goal_grasp_ang = SoftConstraint(-grasp_err_rot, -grasp_err_rot,