示例#1
0
 def _apply(self, ks, parent_pose, child_pose, child_parent_tf, connection_tf, axis, position, vel_limit, mimic_m, mimic_o):
     position = position if mimic_m is None or mimic_o is None else position * mimic_m + mimic_o
     return {'child_parent': self.joint_obj.parent,
             'child_parent_tf': connection_tf * rotation3_axis_angle(axis, position) * child_parent_tf,
             'child_pose': parent_pose * connection_tf * rotation3_axis_angle(axis, position) * child_pose,
             'connection': self.joint_obj}, \
            {'{}_velocity'.format(self.conn_path): Constraint(-vel_limit, vel_limit, get_diff(position))}
示例#2
0
    def generate_constraints(self):
        soft_constraints = {f'{self.link}_vel_{x}': SC((gm.dot(self.input_iframe.pose, self.input_lin_vel.vec))[x],
                                                       (gm.dot(self.input_iframe.pose, self.input_lin_vel.vec))[x],
                                                       1,
                                                       gm.pos_of(self.fk_frame)[x]) for x in range(3)}

        self.goal_rotation = gm.dot(self.input_iframe.pose, self.input_rot_goal.pose, self.input_rot_offset.pose)

        axis, angle = gm.axis_angle_from_matrix(gm.dot(gm.rot_of(self.fk_frame).T, self.goal_rotation))
        r_rot_control = axis * angle

        hack = gm.rotation3_axis_angle([0, 0, 1], 0.0001)

        axis, angle = gm.axis_angle_from_matrix(gm.dot(gm.rot_of(self.fk_frame), hack))
        c_aa = (axis * angle)

        soft_constraints[f'{self.link} align rotation 0'] = SC(lower=r_rot_control[0],
                                                  upper=r_rot_control[0],
                                                  weight=1,
                                                  expr=c_aa[0])
        soft_constraints[f'{self.link} align rotation 1'] = SC(lower=r_rot_control[1],
                                                  upper=r_rot_control[1],
                                                  weight=1,
                                                  expr=c_aa[1])
        soft_constraints[f'{self.link} align rotation 2'] = SC(lower=r_rot_control[2],
                                                  upper=r_rot_control[2],
                                                  weight=1,
                                                  expr=c_aa[2])
        return soft_constraints
示例#3
0
    def test_revolute_and_continuous_joint(self):
        ks = ArticulationModel()

        a  = Position('a')
        b  = Position('b')
        c  = Position('c')
        parent_pose     = frame3_axis_angle(vector3(0,1,0), a, point3(0, b, 5))
        joint_transform = translation3(7, -5, 33)
        axis            = vector3(1, -3, 7)
        axis            = axis / norm(axis)
        position        = c
        child_pose      = parent_pose * joint_transform * rotation3_axis_angle(axis, position)

        ks.apply_operation('create parent', CreateComplexObject(Path('parent'), KinematicLink('', parent_pose)))
        ks.apply_operation('create child', CreateComplexObject(Path('child'),  KinematicLink('', se.eye(4))))
        self.assertTrue(ks.has_data('parent/pose'))
        self.assertTrue(ks.has_data('child/pose'))

        ks.apply_operation('connect parent child', 
                           SetRevoluteJoint(Path('parent/pose'), 
                                            Path('child/pose'), 
                                            Path('fixed_joint'), 
                                            joint_transform,
                                            axis,
                                            position,
                                            -1, 2, 0.5))
        self.assertTrue(ks.has_data('fixed_joint'))
        self.assertEquals(ks.get_data('child/pose'), child_pose)
        ks.remove_operation('connect parent child')
        ks.apply_operation('connect parent child',
                           SetContinuousJoint(Path('parent/pose'), 
                                              Path('child/pose'), 
                                              Path('fixed_joint'), 
                                              joint_transform,
                                              axis,
                                              position, 0.5))
def create_nobilia_shelf(km,
                         prefix,
                         origin_pose=gm.eye(4),
                         parent_path=Path('world')):
    km.apply_operation(
        f'create {prefix}',
        ExecFunction(prefix, MarkedArticulatedObject, str(prefix)))

    shelf_height = 0.72
    shelf_width = 0.6
    shelf_body_depth = 0.35

    wall_width = 0.016

    l_prefix = prefix + ('links', )
    geom_body_wall_l = Box(
        l_prefix + ('body', ),
        gm.translation3(0, 0.5 * (shelf_width - wall_width), 0),
        gm.vector3(shelf_body_depth, wall_width, shelf_height))
    geom_body_wall_r = Box(
        l_prefix + ('body', ),
        gm.translation3(0, -0.5 * (shelf_width - wall_width), 0),
        gm.vector3(shelf_body_depth, wall_width, shelf_height))

    geom_body_ceiling = Box(
        l_prefix + ('body', ),
        gm.translation3(0, 0, 0.5 * (shelf_height - wall_width)),
        gm.vector3(shelf_body_depth, shelf_width - wall_width, wall_width))
    geom_body_floor = Box(
        l_prefix + ('body', ),
        gm.translation3(0, 0, -0.5 * (shelf_height - wall_width)),
        gm.vector3(shelf_body_depth, shelf_width - wall_width, wall_width))

    geom_body_shelf_1 = Box(
        l_prefix + ('body', ),
        gm.translation3(0.02, 0, -0.2 * (shelf_height - wall_width)),
        gm.vector3(shelf_body_depth - 0.04, shelf_width - wall_width,
                   wall_width))

    geom_body_shelf_2 = Box(
        l_prefix + ('body', ),
        gm.translation3(0.02, 0, 0.2 * (shelf_height - wall_width)),
        gm.vector3(shelf_body_depth - 0.04, shelf_width - wall_width,
                   wall_width))

    geom_body_back = Box(
        l_prefix + ('body', ),
        gm.translation3(0.5 * (shelf_body_depth - 0.005), 0, 0),
        gm.vector3(0.005, shelf_width - 2 * wall_width,
                   shelf_height - 2 * wall_width))

    shelf_geom = [
        geom_body_wall_l, geom_body_wall_r, geom_body_ceiling, geom_body_floor,
        geom_body_back, geom_body_shelf_1, geom_body_shelf_2
    ]

    rb_body = RigidBody(parent_path,
                        origin_pose,
                        geometry=dict(enumerate(shelf_geom)),
                        collision=dict(enumerate(shelf_geom)))

    geom_panel_top = Box(l_prefix + ('panel_top', ), gm.eye(4),
                         gm.vector3(0.357, 0.595, wall_width))
    geom_panel_bottom = Box(l_prefix + ('panel_bottom', ), gm.eye(4),
                            gm.vector3(0.357, 0.595, wall_width))

    handle_width = 0.16
    handle_depth = 0.05
    handle_diameter = 0.012

    geom_handle_r = Box(
        l_prefix + ('handle', ),
        gm.translation3(0.5 * handle_depth,
                        0.5 * (handle_width - handle_diameter), 0),
        gm.vector3(handle_depth, handle_diameter, handle_diameter))
    geom_handle_l = Box(
        l_prefix + ('handle', ),
        gm.translation3(0.5 * handle_depth,
                        -0.5 * (handle_width - handle_diameter), 0),
        gm.vector3(handle_depth, handle_diameter, handle_diameter))
    geom_handle_bar = Box(
        l_prefix + ('handle', ),
        gm.translation3(handle_depth - 0.5 * handle_diameter, 0, 0),
        gm.vector3(handle_diameter, handle_width - handle_diameter,
                   handle_diameter))

    handle_geom = [geom_handle_l, geom_handle_r, geom_handle_bar]

    # Sketch of mechanism
    #
    #           T ---- a
    #         ----      \  Z
    #       b ..... V    \
    #       |      ...... d
    #    B  |       ------
    #       c ------
    #                L
    #
    # Diagonal V is virtual
    #
    #
    # Angles:
    #   a -> alpha (given)
    #   b -> gamma_1 + gamma_2 = gamma
    #   c -> don't care
    #   d -> delta_1 + delta_2 = delta
    #

    opening_position = gm.Position(prefix + ('door', ))

    # Calibration results
    #
    # Solution top hinge: cost = 0.03709980624159568 [ 0.08762252 -0.01433833  0.2858676   0.00871125]
    # Solution bottom hinge: cost = 0.025004236048128934 [ 0.1072496  -0.01232362  0.27271013  0.00489996]

    # Added 180 deg rotation due to -x being the forward facing side in this model
    top_hinge_in_body_marker = gm.translation3(0.08762252 - 0.015, 0,
                                               -0.01433833)
    top_panel_marker_in_top_hinge = gm.translation3(0.2858676 - 0.003,
                                                    -wall_width + 0.0025,
                                                    0.00871125 - 0.003)
    front_hinge_in_top_panel_maker = gm.translation3(0.1072496 - 0.02, 0,
                                                     -0.01232362 + 0.007)
    bottom_panel_marker_in_front_hinge = gm.translation3(
        0.27271013, 0, 0.00489996)

    # Top hinge - Data taken from observation
    body_marker_in_body = gm.dot(
        gm.rotation3_axis_angle(gm.vector3(0, 0, 1), math.pi),
        gm.translation3(0.5 * shelf_body_depth - 0.062,
                        -0.5 * shelf_width + 0.078, 0.5 * shelf_height))
    top_panel_marker_in_top_panel = gm.translation3(
        geom_panel_top.scale[0] * 0.5 - 0.062,
        -geom_panel_top.scale[1] * 0.5 + 0.062, geom_panel_top.scale[2] * 0.5)
    bottom_panel_marker_in_bottom_panel = gm.translation3(
        geom_panel_bottom.scale[0] * 0.5 - 0.062,
        -geom_panel_bottom.scale[1] * 0.5 + 0.062,
        geom_panel_bottom.scale[2] * 0.5)

    top_hinge_in_body = gm.dot(body_marker_in_body, top_hinge_in_body_marker)
    top_panel_in_top_hinge = gm.dot(
        top_panel_marker_in_top_hinge,
        gm.inverse_frame(top_panel_marker_in_top_panel))
    front_hinge_in_top_panel = gm.dot(top_panel_marker_in_top_panel,
                                      front_hinge_in_top_panel_maker)
    bottom_panel_in_front_hinge = gm.dot(
        bottom_panel_marker_in_front_hinge,
        gm.inverse_frame(bottom_panel_marker_in_bottom_panel))

    # Point a in body reference frame
    point_a = gm.dot(gm.diag(1, 0, 1, 1), gm.pos_of(top_hinge_in_body))
    point_d = gm.point3(-shelf_body_depth * 0.5 + 0.09, 0,
                        shelf_height * 0.5 - 0.192)
    # point_d  = gm.point3(-shelf_body_depth * 0.5 + gm.Symbol('point_d_x'), 0, shelf_height * 0.5 - gm.Symbol('point_d_z'))
    # Zero alpha along the vertical axis
    vec_a_to_d = gm.dot(point_d - point_a)
    alpha = gm.atan2(vec_a_to_d[0], -vec_a_to_d[2]) + opening_position

    top_panel_in_body = gm.dot(
        top_hinge_in_body,  # Translation hinge to body frame
        gm.rotation3_axis_angle(gm.vector3(0, 1, 0), -opening_position +
                                0.5 * math.pi),  # Hinge around y
        top_panel_in_top_hinge)
    front_hinge_in_body = gm.dot(top_panel_in_body, front_hinge_in_top_panel)

    # Point b in top panel reference frame
    point_b_in_top_hinge = gm.pos_of(
        gm.dot(gm.diag(1, 0, 1, 1), front_hinge_in_top_panel,
               top_panel_in_top_hinge))
    point_b = gm.dot(gm.diag(1, 0, 1, 1), gm.pos_of(front_hinge_in_body))
    # Hinge lift arm in body reference frame
    point_c_in_bottom_panel = gm.dot(
        gm.diag(1, 0, 1, 1),
        bottom_panel_marker_in_bottom_panel,
        gm.point3(-0.094, -0.034, -0.072),
        # gm.point3(-gm.Symbol('point_c_x'), -0.034, -gm.Symbol('point_c_z'))
    )
    point_c_in_front_hinge = gm.dot(
        gm.diag(1, 0, 1, 1),
        gm.dot(bottom_panel_in_front_hinge, point_c_in_bottom_panel))
    length_z = gm.norm(point_a - point_d)

    vec_a_to_b = point_b - point_a
    length_t = gm.norm(vec_a_to_b)
    length_b = gm.norm(point_c_in_front_hinge[:3])
    # length_l = gm.Symbol('length_l') # 0.34
    length_l = 0.372

    vec_b_to_d = point_d - point_b
    length_v = gm.norm(vec_b_to_d)
    gamma_1 = inner_triangle_angle(length_t, length_v, length_z)
    gamma_2 = inner_triangle_angle(length_b, length_v, length_l)

    top_panel_offset_angle = gm.atan2(point_b_in_top_hinge[2],
                                      point_b_in_top_hinge[0])
    bottom_offset_angle = gm.atan2(point_c_in_front_hinge[2],
                                   point_c_in_front_hinge[0])

    gamma = gamma_1 + gamma_2

    rb_panel_top = RigidBody(l_prefix + ('body', ),
                             gm.dot(rb_body.pose, top_panel_in_body),
                             top_panel_in_body,
                             geometry={0: geom_panel_top},
                             collision={0: geom_panel_top})

    # old offset: 0.5 * geom_panel_top.scale[2] + 0.03
    tf_bottom_panel = gm.dot(
        front_hinge_in_top_panel,
        gm.rotation3_axis_angle(
            gm.vector3(0, 1, 0),
            math.pi + bottom_offset_angle - top_panel_offset_angle),
        gm.rotation3_axis_angle(gm.vector3(0, -1, 0), gamma),
        bottom_panel_in_front_hinge)

    rb_panel_bottom = RigidBody(l_prefix + ('panel_top', ),
                                gm.dot(rb_panel_top.pose, tf_bottom_panel),
                                tf_bottom_panel,
                                geometry={0: geom_panel_bottom},
                                collision={0: geom_panel_bottom})

    handle_transform = gm.dot(
        gm.translation3(geom_panel_bottom.scale[0] * 0.5 - 0.08, 0,
                        0.5 * wall_width),
        gm.rotation3_axis_angle(gm.vector3(0, 1, 0), -math.pi * 0.5))
    rb_handle = RigidBody(l_prefix + ('panel_bottom', ),
                          gm.dot(rb_panel_bottom.pose, handle_transform),
                          handle_transform,
                          geometry={x: g
                                    for x, g in enumerate(handle_geom)},
                          collision={x: g
                                     for x, g in enumerate(handle_geom)})
    # Only debugging
    point_c = gm.dot(rb_panel_bottom.pose, point_c_in_bottom_panel)
    vec_b_to_c = point_c - point_b

    km.apply_operation(f'create {prefix}/links/body',
                       CreateValue(rb_panel_top.parent, rb_body))
    km.apply_operation(f'create {prefix}/links/panel_top',
                       CreateValue(rb_panel_bottom.parent, rb_panel_top))
    km.apply_operation(
        f'create {prefix}/links/panel_bottom',
        CreateValue(l_prefix + ('panel_bottom', ), rb_panel_bottom))
    km.apply_operation(f'create {prefix}/links/handle',
                       CreateValue(l_prefix + ('handle', ), rb_handle))
    km.apply_operation(
        f'create {prefix}/joints/hinge',
        ExecFunction(
            prefix + Path('joints/hinge'), RevoluteJoint,
            CPath(rb_panel_top.parent), CPath(rb_panel_bottom.parent),
            opening_position, gm.vector3(0, 1, 0), gm.eye(4), 0, 1.84, **{
                f'{opening_position}':
                Constraint(0 - opening_position, 1.84 - opening_position,
                           opening_position),
                f'{gm.DiffSymbol(opening_position)}':
                Constraint(-0.25, 0.25, gm.DiffSymbol(opening_position))
            }))
    m_prefix = prefix + ('markers', )
    km.apply_operation(
        f'create {prefix}/markers/body',
        ExecFunction(m_prefix + ('body', ), Frame,
                     CPath(l_prefix + ('body', )),
                     gm.dot(rb_body.pose,
                            body_marker_in_body), body_marker_in_body))
    km.apply_operation(
        f'create {prefix}/markers/top_panel',
        ExecFunction(m_prefix + ('top_panel', ), Frame,
                     CPath(l_prefix + ('panel_top', )),
                     gm.dot(rb_panel_top.pose, top_panel_marker_in_top_panel),
                     top_panel_marker_in_top_panel))
    km.apply_operation(
        f'create {prefix}/markers/bottom_panel',
        ExecFunction(
            m_prefix + ('bottom_panel', ), Frame,
            CPath(l_prefix + ('panel_bottom', )),
            gm.dot(rb_panel_bottom.pose, bottom_panel_marker_in_bottom_panel),
            bottom_panel_marker_in_bottom_panel))

    return NobiliaDebug(
        [
            top_hinge_in_body,
            gm.dot(
                top_hinge_in_body,
                gm.rotation3_axis_angle(gm.vector3(0, 1, 0),
                                        -opening_position + 0.5 * math.pi),
                top_panel_in_top_hinge, front_hinge_in_top_panel),
            body_marker_in_body,
            gm.dot(rb_panel_top.pose, top_panel_marker_in_top_panel),
            gm.dot(rb_panel_bottom.pose, bottom_panel_marker_in_bottom_panel)
        ], [(point_a, vec_a_to_d), (point_a, vec_a_to_b),
            (point_b, vec_b_to_d), (point_b, vec_b_to_c)],
        {
            'gamma_1':
            gamma_1,
            'gamma_1 check_dot':
            gamma_1 - gm.acos(
                gm.dot_product(-vec_a_to_b / gm.norm(vec_a_to_b),
                               vec_b_to_d / gm.norm(vec_b_to_d))),
            'gamma_1 check_cos':
            gamma_1 - inner_triangle_angle(
                gm.norm(vec_a_to_b), gm.norm(vec_b_to_d), gm.norm(vec_a_to_d)),
            'gamma_2':
            gamma_2,
            'gamma_2 check_dot':
            gamma_2 - gm.acos(
                gm.dot_product(vec_b_to_c / gm.norm(vec_b_to_c),
                               vec_b_to_d / gm.norm(vec_b_to_d))),
            'length_v':
            length_v,
            'length_b':
            length_b,
            'length_l':
            length_l,
            'position':
            opening_position,
            'alpha':
            alpha,
            'dist c d':
            gm.norm(point_d - point_c)
        }, {
            gm.Symbol('point_c_x'): 0.094,
            gm.Symbol('point_c_z'): 0.072,
            gm.Symbol('point_d_x'): 0.09,
            gm.Symbol('point_d_z'): 0.192,
            gm.Symbol('length_l'): 0.372
        })
示例#5
0
def create_door(km,
                prefix,
                height,
                width,
                frame_width=0.05,
                to_world_tf=gm.eye(4)):
    km.apply_operation(f'create {prefix}',
                       ExecFunction(prefix, ArticulatedObject, 'door'))

    prefix = prefix + ('links', )

    base_plate_geom = Box(prefix + ('frame', ), gm.translation3(0, 0, 0.015),
                          gm.vector3(0.2, width + 0.2, 0.03))
    frame_pillar_l_geom = Box(
        prefix + ('frame', ),
        gm.translation3(0, 0.5 * (width + frame_width), 0.5 * height + 0.03),
        gm.vector3(frame_width, frame_width, height))
    frame_pillar_r_geom = Box(
        prefix + ('frame', ),
        gm.translation3(0, -0.5 * (width + frame_width), 0.5 * height + 0.03),
        gm.vector3(frame_width, frame_width, height))
    frame_bar_geom = Box(
        prefix + ('frame', ),
        gm.translation3(0, 0, height + 0.5 * frame_width + 0.03),
        gm.vector3(frame_width, width + 2 * frame_width, frame_width))
    frame_rb = RigidBody(Path('world'),
                         to_world_tf,
                         geometry={
                             1: base_plate_geom,
                             2: frame_pillar_l_geom,
                             3: frame_pillar_r_geom,
                             4: frame_bar_geom
                         },
                         collision={
                             1: base_plate_geom,
                             2: frame_pillar_l_geom,
                             3: frame_pillar_r_geom,
                             4: frame_bar_geom
                         })
    door_geom1 = Box(prefix + ('door', ), gm.translation3(0.015, 0, 0),
                     gm.vector3(0.03, width, height))
    door_geom2 = Box(prefix + ('door', ), gm.translation3(-0.005, 0, 0.01),
                     gm.vector3(0.01, width + 0.02, height + 0.01))

    handle_bar_geom = Box(prefix + ('handle', ),
                          gm.translation3(-0.08, 0.06, 0),
                          gm.vector3(0.02, 0.12, 0.02))
    handle_cylinder_geom = Cylinder(
        prefix + ('handle', ),
        gm.dot(gm.translation3(-0.04, 0, 0),
               gm.rotation3_axis_angle(gm.vector3(0, 1, 0), 0.5 * math.pi)),
        0.02, 0.08)

    door_rb = RigidBody(Path(f'{prefix}/frame'),
                        gm.translation3(0.0, 0.5 * -width - 0.01, 0),
                        geometry={
                            1: door_geom1,
                            2: door_geom2
                        },
                        collision={
                            1: door_geom1,
                            2: door_geom2
                        })

    handle_rb = RigidBody(Path(f'{prefix}/door'),
                          gm.eye(4),
                          geometry={
                              1: handle_bar_geom,
                              2: handle_cylinder_geom
                          },
                          collision={
                              1: handle_bar_geom,
                              2: handle_cylinder_geom
                          })

    km.apply_operation(f'create {prefix}/frame',
                       CreateValue(prefix + ('frame', ), frame_rb))
    km.apply_operation(f'create {prefix}/door',
                       CreateValue(prefix + ('door', ), door_rb))
    km.apply_operation(f'create {prefix}/handle',
                       CreateValue(prefix + ('handle', ), handle_rb))

    door_position = gm.Position('door')
    handle_position = gm.Position('handle')

    prefix = prefix[:-1] + ('joints', )
    km.apply_operation(
        f'create {prefix}',
        ExecFunction(
            prefix + ('hinge', ), RevoluteJoint, CPath(door_rb.parent),
            CPath(handle_rb.parent), door_position, gm.vector3(0, 0, -1),
            gm.translation3(0.5 * -frame_width - 0.005, 0.5 * width + 0.01,
                            0.5 * height + 0.03), 0, 0.75 * math.pi, 100, 1,
            0))

    km.apply_operation(
        f'create {prefix}',
        ExecFunction(prefix + ('handle', ), RevoluteJoint,
                     CPath(handle_rb.parent), CPath(f'{prefix}/handle'),
                     handle_position, gm.vector3(-1, 0, 0),
                     gm.translation3(0, -0.5 * width - 0.02 + 0.06,
                                     0), 0, 0.25 * math.pi, 100, 1, 0))

    prefix = prefix[:-1]
    km.apply_operation(
        f'connect {prefix}/links/frame {prefix}/links/door',
        CreateURDFFrameConnection(prefix + ('joints', 'hinge'),
                                  Path(door_rb.parent),
                                  Path(handle_rb.parent)))
    km.apply_operation(
        f'connect {prefix}/links/door {prefix}/links/handle',
        CreateURDFFrameConnection(prefix + ('joints', 'handle'),
                                  Path(handle_rb.parent),
                                  Path(f'{prefix}/links/handle')))
    km.apply_operation(
        f'add lock {door_position}',
        ConditionalDoorHandleConstraints(door_position, handle_position,
                                         math.pi * 0.01, math.pi * 0.15))
    fac = (stamp - p_data.stamp).to_sec() / segment_length

    return (1 - fac) * getattr(p_data, value) + fac * getattr(data, value)


angle_hinge = gm.Symbol('angle_top')
x_hinge_in_parent, z_hinge_in_parent = [
    gm.Symbol(f'hinge_in_parent_{x}') for x in 'xz'
]
x_child_in_hinge, z_child_in_hinge = [
    gm.Symbol(f'child_in_hinge_{x}') for x in 'xz'
]

fwd_kinematic_hinge = gm.dot(
    gm.translation3(x_hinge_in_parent, 0, z_hinge_in_parent),
    gm.rotation3_axis_angle(gm.vector3(0, -1, 0), angle_hinge),
    gm.translation3(x_child_in_hinge, 0, z_child_in_hinge))
# we don't care about the location in y
fwd_kinematic_hinge_residual_tf = gm.speed_up(
    gm.dot(gm.diag(1, 0, 1, 1), fwd_kinematic_hinge),
    gm.free_symbols(fwd_kinematic_hinge))


def compute_y_hinge_axis_residual(x, angle_tf):
    """Computes the residual for an estimate of the hinge locations on the nobilia shelf
    
    Args:
        x (np.ndarray): [xh, zh, xc, zc] x and z locations of hinge in parent and child in hinge
        angle_1_tf (TYPE): list of tuples (a, tf) where a is the angle of the top panel relative to the parent
    """
    param_dict = {
import kineverse.gradients.gradient_math as gm
import numpy as np
import matplotlib.pyplot as plt

from kineverse.visualization.plotting import hsv_to_rgb, \
            rgb_to_hex

if __name__ == '__main__':

    a, b = [gm.Position(x) for x in 'ab']

    l = 2
    a_in_w = gm.dot(gm.translation3(0, 0, 2), gm.translation3(0, 0, -a))
    d_in_a = gm.rotation3_axis_angle(gm.vector3(0, 1, 0), gm.acos(a / l))
    d_in_w = gm.dot(a_in_w, d_in_a)
    A = gm.pos_of(a_in_w)
    B = gm.dot(d_in_w, gm.point3(0, 0, l))
    C = gm.dot(d_in_w, gm.point3(0, 0, l * 0.5))
    D = gm.dot(d_in_w, gm.point3(0, 0, l * 0.25))
    E = gm.dot(d_in_w, gm.point3(0, 0, l * 0.75))

    lock_bound = gm.alg_not(
        gm.alg_and(gm.less_than(b, 0.3), gm.less_than(1.99, a)))

    # PLOT OF MOVEMENT

    As = []
    Bs = []
    Cs = []
    Ds = []
    Es = []