def _test_(): singleton_snps = genotypes.simulate_k_tons(n=500, m=1000) doubleton_snps = genotypes.simulate_k_tons(k=2, n=500, m=1000) common_snps = genotypes.simulate_common_genotypes(500, 1000) snps = sp.vstack([common_snps, singleton_snps, doubleton_snps]) print snps snps = snps.T snps = (snps - sp.mean(snps, 0)) / sp.std(snps, 0) snps = snps.T print snps, snps.shape file_prefix = os.environ['HOME'] + '/tmp/test' phen_list = phenotypes.simulate_traits_w_snps_to_hdf5(snps, hdf5_file_prefix=file_prefix, num_traits=30, p=0.1) singletons_thres = [] doubletons_thres = [] common_thres = [] for i, y in enumerate(phen_list['phenotypes']): K = kinship.calc_ibd_kinship(snps) K = kinship.scale_k(K) lmm = lm.LinearMixedModel(y) lmm.add_random_effect(K) r1 = lmm.get_REML() print 'pseudo_heritability:', r1['pseudo_heritability'] ex_res = lm.emmax(snps, y, K) plt.figure() plt.hist(y, 50) plt.savefig('%s_%d_phen.png' % (file_prefix, i)) plt.clf() agr.plot_simple_qqplots_pvals('%s_%d' % (file_prefix, i), [ex_res['ps'][:1000], ex_res['ps'][1000:2000], ex_res['ps'][2000:]], result_labels=['Common SNPs', 'Singletons', 'Doubletons'], line_colors=['b', 'r', 'y'], num_dots=200, max_neg_log_val=3) # Cholesky permutations.. res = lm.emmax_perm_test(singleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] singletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(doubleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] doubletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(common_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] common_thres.append(res['threshold_05'][0]) #ATT permutations (Implement) #PC permutations (Implement) print sp.mean(singletons_thres), sp.std(singletons_thres) print sp.mean(doubletons_thres), sp.std(doubletons_thres) print sp.mean(common_thres), sp.std(common_thres)
def get_estimates_another_matrix(self, k2, xs=None, ngrids=[5, 5, 5, 5, 5], llim=-10, ulim=10, method='REML'): """ Handles two K matrices, and one I matrix. Methods available are 'REML', and 'ML' """ print("this function is not well tested") return 0 if xs != None: X = sp.hstack([self.X, xs]) else: X = self.X for it_i in range(len(ngrids)): delta = float(ulim - llim) / ngrids[it_i] # narrow this range, to get a roughly optimized value. So the final value is not the exact best value log_k_ratio = llim lls = [] res_list = [] for i in range(ngrids[it_i] + 1): k_ratio = sp.exp(log_k_ratio) a = k_ratio / (k_ratio + 1.0) K = a * self.K + (1 - a) * k2 eig_L = self._get_eigen_L_(K=K) # Now perform EMMA res_dict = self.get_estimates(eig_L, K=K, xs=xs, ngrids=10, method=method, llim=-10, ulim=10) res_list.append(res_dict) lls.append(res_dict['max_ll']) log_k_ratio += delta max_ll_i = sp.argmax(lls) ulim = llim + delta * (max_ll_i + 1) # This range is updated llim = llim + delta * (max_ll_i - 1) opt_k_ratio = sp.exp(log_k_ratio) a = opt_k_ratio / (opt_k_ratio + 1) opt_k = kinship.scale_k(a * self.K + (1 - a) * k2) res_dict = self.get_estimates(eig_L, K=opt_k, xs=xs) res_dict['opt_k'] = opt_k res_dict['opt_k_ratio'] = opt_k_ratio res_dict['perc_var1'] = a * res_dict['pseudo_heritability'] res_dict['perc_var2'] = (1 - a) * res_dict['pseudo_heritability'] # this function is computationally density, should not use emma method to get the p_val # try to get the emmax method return res_dict
def _test_scz_(): # Load Schizophrenia data singleton_snps = genotypes.simulate_k_tons(n=500, m=1000) doubleton_snps = genotypes.simulate_k_tons(k=2, n=500, m=1000) common_snps = genotypes.simulate_common_genotypes(500, 1000) snps = sp.vstack([common_snps, singleton_snps, doubleton_snps]) test_snps = sp.vstack([singleton_snps, doubleton_snps]) print snps phen_list = phenotypes.simulate_traits( snps, hdf5_file_prefix='/home/bv25/tmp/test', num_traits=30, p=1.0) singletons_thres = [] doubletons_thres = [] common_thres = [] for i, y in enumerate(phen_list): K = kinship.calc_ibd_kinship(snps) K = kinship.scale_k(K) lmm = lm.LinearMixedModel(y) lmm.add_random_effect(K) r1 = lmm.get_REML() print 'pseudo_heritability:', r1['pseudo_heritability'] ex_res = lm.emmax(snps, y, K) plt.figure() plt.hist(y, 50) plt.savefig('/home/bv25/tmp/test_%d_phen.png' % i) plt.clf() agr.plot_simple_qqplots_pvals('/home/bv25/tmp/test_%d' % i, [ ex_res['ps'][:1000], ex_res['ps'][1000:2000], ex_res['ps'][2000:] ], result_labels=[ 'Common SNPs', 'Singletons', 'Doubletons' ], line_colors=['b', 'r', 'y'], num_dots=200, max_neg_log_val=3) # Now permutations.. res = lm.emmax_perm_test(singleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] singletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(doubleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] doubletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(common_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] common_thres.append(res['threshold_05'][0]) print sp.mean(singletons_thres), sp.std(singletons_thres) print sp.mean(doubletons_thres), sp.std(doubletons_thres) print sp.mean(common_thres), sp.std(common_thres)
def _test_scz_(): # Load Schizophrenia data singleton_snps = genotypes.simulate_k_tons(n=500, m=1000) doubleton_snps = genotypes.simulate_k_tons(k=2, n=500, m=1000) common_snps = genotypes.simulate_common_genotypes(500, 1000) snps = sp.vstack([common_snps, singleton_snps, doubleton_snps]) test_snps = sp.vstack([singleton_snps, doubleton_snps]) print snps phen_list = phenotypes.simulate_traits(snps, hdf5_file_prefix='/home/bv25/tmp/test', num_traits=30, p=1.0) singletons_thres = [] doubletons_thres = [] common_thres = [] for i, y in enumerate(phen_list): K = kinship.calc_ibd_kinship(snps) K = kinship.scale_k(K) lmm = lm.LinearMixedModel(y) lmm.add_random_effect(K) r1 = lmm.get_REML() print 'pseudo_heritability:', r1['pseudo_heritability'] ex_res = lm.emmax(snps, y, K) plt.figure() plt.hist(y, 50) plt.savefig('/home/bv25/tmp/test_%d_phen.png' % i) plt.clf() agr.plot_simple_qqplots_pvals('/home/bv25/tmp/test_%d' % i, [ex_res['ps'][:1000], ex_res['ps'][1000:2000], ex_res['ps'][2000:]], result_labels=['Common SNPs', 'Singletons', 'Doubletons'], line_colors=['b', 'r', 'y'], num_dots=200, max_neg_log_val=3) # Now permutations.. res = lm.emmax_perm_test(singleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] singletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(doubleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] doubletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(common_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] common_thres.append(res['threshold_05'][0]) print sp.mean(singletons_thres), sp.std(singletons_thres) print sp.mean(doubletons_thres), sp.std(doubletons_thres) print sp.mean(common_thres), sp.std(common_thres)
def _test_(): singleton_snps = genotypes.simulate_k_tons(n=500, m=1000) doubleton_snps = genotypes.simulate_k_tons(k=2, n=500, m=1000) common_snps = genotypes.simulate_common_genotypes(500, 1000) snps = sp.vstack([common_snps, singleton_snps, doubleton_snps]) print snps snps = snps.T snps = (snps - sp.mean(snps, 0)) / sp.std(snps, 0) snps = snps.T print snps, snps.shape file_prefix = os.environ['HOME'] + '/tmp/test' phen_list = phenotypes.simulate_traits_w_snps_to_hdf5( snps, hdf5_file_prefix=file_prefix, num_traits=30, p=0.1) singletons_thres = [] doubletons_thres = [] common_thres = [] for i, y in enumerate(phen_list['phenotypes']): K = kinship.calc_ibd_kinship(snps) K = kinship.scale_k(K) lmm = lm.LinearMixedModel(y) lmm.add_random_effect(K) r1 = lmm.get_REML() print 'pseudo_heritability:', r1['pseudo_heritability'] ex_res = lm.emmax(snps, y, K) plt.figure() plt.hist(y, 50) plt.savefig('%s_%d_phen.png' % (file_prefix, i)) plt.clf() agr.plot_simple_qqplots_pvals('%s_%d' % (file_prefix, i), [ ex_res['ps'][:1000], ex_res['ps'][1000:2000], ex_res['ps'][2000:] ], result_labels=[ 'Common SNPs', 'Singletons', 'Doubletons' ], line_colors=['b', 'r', 'y'], num_dots=200, max_neg_log_val=3) # Cholesky permutations.. res = lm.emmax_perm_test(singleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] singletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(doubleton_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] doubletons_thres.append(res['threshold_05'][0]) res = lm.emmax_perm_test(common_snps, y, K, num_perm=1000) print 1.0 / (20 * 1000.0), res['threshold_05'] common_thres.append(res['threshold_05'][0]) #ATT permutations (Implement) #PC permutations (Implement) print sp.mean(singletons_thres), sp.std(singletons_thres) print sp.mean(doubletons_thres), sp.std(doubletons_thres) print sp.mean(common_thres), sp.std(common_thres)