示例#1
0
def main(config):
    """
    Main code for training a classification/seg/classification+seg model.

    Args:
        config (dict): dictionary read from a yaml file
            i.e. script/configs/train.yml
    Returns:
        None
    """
    # setting up the train/val split with filenames
    seed = config["io_params"]["split_seed"]
    seed_everything(seed)
    exp = TrainSegExperiment2D(config)
    output_key = "logits"

    print(f"Seed: {seed}")

    runner = SupervisedRunner(output_key=output_key)

    runner.train(model=exp.model,
                 criterion=exp.criterion,
                 optimizer=exp.opt,
                 scheduler=exp.lr_scheduler,
                 loaders=exp.loaders,
                 callbacks=exp.cb_list,
                 **config["runner_params"])
    # Not saving plots if plot_params not specified in config
    if config.get("plot_params"):
        figs = plot_metrics(logdir=config["runner_params"]["logdir"],
                            metrics=config["plot_params"]["metrics"])
        save_figs(figs, save_dir=config["plot_params"]["save_dir"])
示例#2
0
def main(config):
    """
    Main code for training a classification model.

    Args:
        config (dict): dictionary read from a yaml file
            i.e. experiments/finetune_classification.yml
    Returns:
        None
    """
    # setting up the train/val split with filenames
    seed = config["io_params"]["split_seed"]
    seed_everything(seed)
    dim = len(config["predict_3D_params"]["patch_size"])
    mode = config["mode"].lower()
    assert mode in ["classification", "segmentation"], \
        "The `mode` must be one of ['classification', 'segmentation']."
    if mode == "classification":
        raise NotImplementedError
    elif mode == "segmentation":
        if dim == 2:
            exp = SegmentationInferenceExperiment2D(config)
        elif dim == 3:
            exp = SegmentationInferenceExperiment(config)

    print(f"Seed: {seed}\nMode: {mode}")
    pred = Predictor(out_dir=config["out_dir"],
                     checkpoint_path=config["checkpoint_path"],
                     model=exp.model,
                     test_loader=exp.loaders["test"],
                     pred_3D_params=config["predict_3D_params"],
                     pseudo_3D=config.get("pseudo_3D"))
    pred.run_3D_predictions()
示例#3
0
def main(config):
    """
    Main code for training a classification model.

    Args:
        config (dict): dictionary read from a yaml file
            i.e. experiments/finetune_classification.yml
    Returns:
        None
    """
    # setting up the train/val split with filenames
    seed = config["io_params"]["split_seed"]
    seed_everything(seed)
    mode = config["mode"].lower()
    assert mode in ["classification", "segmentation", "both"], \
        "The `mode` must be one of ['classification', 'segmentation', 'both']."
    if mode == "classification":
        raise NotImplementedError
    elif mode == "segmentation":
        if config["dim"] == 2:
            exp = TrainSegExperiment2D(config)
        elif config["dim"] == 3:
            exp = TrainSegExperiment(config)
        output_key = "logits"
    elif mode == "both":
        if config["dim"] == 2:
            exp = TrainClfSegExperiment2D(config)
        elif config["dim"] == 3:
            exp = TrainClfSegExperiment3D(config)
        output_key = ["seg_logits", "clf_logits"]

    print(f"Seed: {seed}\nMode: {mode}")

    runner = SupervisedRunner(output_key=output_key)

    runner.train(model=exp.model,
                 criterion=exp.criterion,
                 optimizer=exp.opt,
                 scheduler=exp.lr_scheduler,
                 loaders=exp.loaders,
                 callbacks=exp.cb_list,
                 **config["runner_params"])
    # Not saving plots if plot_params not specified in config
    if not config.get("plot_params"):
        figs = plot_metrics(logdir=config["runner_params"]["logdir"],
                            metrics=config["plot_params"]["metrics"])
        save_figs(figs, save_dir=config["plot_params"]["save_dir"])
def main(config, out_path):
    """
    Main code for training a classification model.

    Args:
        config (dict): dictionary read from a yaml file
            i.e. experiments/finetune_classification.yml
    Returns:
        None
    """
    # setting up the train/val split with filenames
    seed = config["io_params"]["split_seed"]
    seed_everything(seed)
    exp = SegmentationInferenceExperiment2D(config)
    print(f"Seed: {seed}")
    test_ids = exp.test_dset.im_ids
    if not os.path.isdir(out_path):
        os.mkdir(out_path)
        print(f"Created {out_path}")
    print(f"Copying {len(test_ids)} test files to a {out_path}")
    copy_files(test_ids, out_path)
示例#5
0
def main(config):
    """
    Main code for training a classification model.

    Args:
        config (dict): dictionary read from a yaml file
            i.e. experiments/finetune_classification.yml
    Returns:
        None
    """
    # setting up the train/val split with filenames
    seed = config["io_params"]["split_seed"]
    seed_everything(seed)
    exp = SegmentationInferenceExperiment2D(config)

    print(f"Seed: {seed}")
    pred = General3DPredictor(out_dir=config["out_dir"],
                              model=exp.model,
                              test_loader=exp.loaders["test"],
                              pred_3D_params=config["predict_3D_params"],
                              pseudo_3D=config.get("pseudo_3D"))
    pred.run_3D_predictions()