def get_kkmeans_model(X, X_without_contamination, train_data, num_clusters): error_2 = 1000000 for i in xrange(1, 15): try: kernelKMeans = KernelKMeans(n_clusters=num_clusters, max_iter=1000, verbose=0, kernel='rbf', gamma=2**-i) kernelKMeans.fit(X) predict = kernelKMeans.predict(X_without_contamination) #print predict error = get_minimum_score(predict, train_data, num_clusters) #print error if error < error_2: error_2 = error kernelKMeans_model = kernelKMeans gamma = 2**-i except: pass kernelKMeans_model.predict(X_without_contamination) #print gamma #raw_input('ingrese') return kernelKMeans_model, gamma
def get_kkmeans_model(X, X_without_contamination, train_data): error_2 = 1000000 for i in xrange(15): try: kernelKMeans = KernelKMeans(n_clusters=3, max_iter=1000, verbose=0,kernel='rbf',gamma=2**-i) kernelKMeans.fit_predict(X) predict = kernelKMeans.predict(X_without_contamination) error = get_minimum_score(predict,train_data) if error < error_2 : error_2 = error kernelKMeans_model = kernelKMeans gamma = 2**-i except: pass return kernelKMeans_model, gamma
def get_kkmeans_model(X, X_without_contamination, train_data): error_2 = 1000000 for i in xrange(15): try: kernelKMeans = KernelKMeans(n_clusters=3, max_iter=1000, verbose=0, kernel='rbf', gamma=2**-i) kernelKMeans.fit_predict(X) predict = kernelKMeans.predict(X_without_contamination) error = get_minimum_score(predict, train_data) if error < error_2: error_2 = error kernelKMeans_model = kernelKMeans gamma = 2**-i except: pass return kernelKMeans_model, gamma
def get_kkmeans_model(X, X_without_contamination, train_data,num_clusters): error_2 = 1000000 for i in xrange(1,15): try: kernelKMeans = KernelKMeans(n_clusters=num_clusters, max_iter=1000, verbose=0,kernel='rbf',gamma=2**-i) kernelKMeans.fit(X) predict = kernelKMeans.predict(X_without_contamination) #print predict error = get_minimum_score(predict,train_data,num_clusters) #print error if error < error_2 : error_2 = error kernelKMeans_model = kernelKMeans gamma = 2**-i except: pass kernelKMeans_model.predict(X_without_contamination) #print gamma #raw_input('ingrese') return kernelKMeans_model, gamma