def _runRScript(RScript): rscriptname = rosettahelper.writeTempFile(".", RScript) #p = subprocess.Popen(["/opt/R-2.15.1/bin/R","CMD", "BATCH", rscriptname]) p = subprocess.Popen(["R", "CMD", "BATCH", rscriptname]) while True: time.sleep(0.3) errcode = p.poll() if errcode != None: break rout = "%s.Rout" % rscriptname delete_file(rscriptname) #colortext.warning(rosettahelper.readFile(rout)) rout_contents = None if os.path.exists(rout): rout_contents = rosettahelper.readFile(rout) if errcode != 0: if os.path.exists(rout): colortext.warning(rout_contents) delete_file(rout) raise colortext.Exception( "The R script failed with error code %d." % errcode) delete_file(rout) return rout_contents
def get_organisms(self): self.organisms = {} self._get_XML() ACCs = self._get_active_ACCs() #print(ACCs) name_count = {} for UniProtAC in ACCs: #print(UniProtAC) if UniProtAC in self.AC_entries: AC_entry = self.AC_entries[UniProtAC] else: if UniProtAC in ['N2XE95', 'N1E9H6', 'N2JUB3', 'N2Z3Z2']: # hack for bad XML documents at time of writing continue if not self.silent: colortext.warning("Retrieving %s" % UniProtAC) try: AC_entry = UniProtACEntry(UniProtAC, cache_dir = self.cache_dir, silent = self.silent) except EmptyUniProtACXMLException: continue for o in AC_entry.organisms: name_count[o['scientific']] = name_count.get(o['scientific'], 0) name_count[o['scientific']] += 1 assert(len(AC_entry.organisms) == 1) self.organisms[UniProtAC] = AC_entry.organisms[0]
def get_sqlalchemy_schema(self, restrict_to_tables = []): colortext.warning(' *** MySQL schema ***') schema = [] #print(self.intermediate_schema) typedefs = {'sqlalchemy.types' : set(), 'sqlalchemy.dialects.mysql' : set()} for tbl in self.tables: if (not restrict_to_tables) or (tbl in restrict_to_tables): colortext.message(tbl) print(self.db_interface.execute("SHOW CREATE TABLE %s" % tbl))[0]['Create Table'] print('') code = [] code.append("class %s(DeclarativeBase):" % tbl) code.append(" __tablename__ = '%s'\n" % tbl) #print('\n'.join(code)) intermediate_table = self.intermediate_schema[tbl] for field in intermediate_table: s = field.to_sql_alchemy(typedefs) code.append(' {0}'.format(s)) #print(s) code.append('\n') #print('') schema.extend(code) imports = [] for module, types in sorted(typedefs.iteritems()): imports.append('from %s import %s' % (module, ', '.join(sorted(types)))) schema = imports + [''] + schema colortext.warning('*** SQLAlchemy class definitions ***') print('\n'.join(schema))
def __init__(self, user, host, db, passwd, port = 3306, socket = '/var/lib/mysql/mysql.sock'): try: self.db_interface = DatabaseInterface({}, isInnoDB=True, numTries=1, host=host, db=db, user=user, passwd=passwd, port=3306, unix_socket=socket, passwdfile=None, use_utf=False, use_locking=True) except Exception, e: colortext.error('An exception was thrown trying to connect to the database.') colortext.warning(str(e)) print(traceback.format_exc()) sys.exit(1)
def blast_by_pdb_chain(self, pdb_id, chain_id, take_top_percentile = 30.0, cut_off = None, matrix = None, sequence_identity_cut_off = None, silent = None): # Checks pdb_id, chain_id = pdb_id.strip(), chain_id.strip() if len(pdb_id) != 4: raise Exception('A PDB ID of four characters was expected. "{0}" was passed.'.format(pdb_id)) if 5 <= len(chain_id) <= 0: raise Exception('A chain ID of between 1-4 characters was expected. "{0}" was passed.'.format(chain_id)) self.log('BLASTing {0}:{1}'.format(pdb_id, chain_id), silent) # Construct query query_data = dict( structureId = pdb_id, chainId = chain_id, ) xml_query = self._construct_query(query_data, cut_off = cut_off, matrix = matrix, sequence_identity_cut_off = sequence_identity_cut_off) # Read cached results if self.bio_cache: data = self.bio_cache.load_pdb_chain_blast(pdb_id, chain_id, query_data['eCutOff'], query_data['matrix'], query_data['sequenceIdentityCutoff']) if data: assert('query_date' in data) query_date = datetime.datetime.strptime(data['query_date'], BLAST.date_format) age_in_hours = ((datetime.datetime.now() - query_date).total_seconds()) / (3600.0) assert(age_in_hours > -24.01) if not self.force_lookup: if age_in_hours < self.stale_period_in_hours: return data['hits'] # POST the request and parse the PDB hits result = self._post(xml_query) hits = [l.strip().split(':')[0] for l in result.split('\n') if l.strip()] if pdb_id not in hits: if not hits: try: p = self.bio_cache.get_pdb_object(pdb_id) chain_type = p.chain_types[chain_id] sequence_length = len(p.seqres_sequences[chain_id]) if not(chain_type == 'Protein' or chain_type == 'Protein skeleton'): colortext.warning('Chain {1} of {0} is a {2} chain.'.format(pdb_id, chain_id, chain_type)) hits = None # None suggests that the chain was not a protein chain whereas an empty list suggest a protein chain with no hits elif sequence_length < self.min_sequence_length: colortext.warning('Chain {1} of {0} only contains {2} residues. The minimum sequence length is set to {3} residues so we will ignore this chain in matching.'.format(pdb_id, chain_id, sequence_length, self.min_sequence_length)) hits = None # None suggests that the chain was not a protein chain whereas an empty list suggest a protein chain with no hits except: raise colortext.Exception('Failed to determine the chain type for chain {1} of {0}.'.format(pdb_id, chain_id)) else: raise Exception('A BLAST of {0} chain {1} failed to find any hits for {0}. Is the chain a polypeptide chain?'.format(pdb_id, chain_id)) query_data['hits'] = hits # Cache the results if self.bio_cache: self.bio_cache.save_pdb_chain_blast(pdb_id, chain_id, query_data['eCutOff'], query_data['matrix'], query_data['sequenceIdentityCutoff'], query_data) return query_data['hits']
def load(): global sys_settings if not sys_settings: settings_file = os.path.splitext(os.path.abspath(__file__))[0] + '.json' if not os.path.exists(settings_file): create_template(settings_file) colortext.warning('\nThe settings file {0} needs to be configured. Exiting.\n'.format(settings_file)) sys.exit(1) d = json.loads(read_file(settings_file)) sys_settings = NestedBunch(d) return sys_settings
def test_prediction_set(): c = 0 counts = {} ppi_api = get_ppi_api() for j in ppi_api.get_queued_jobs(prediction_set, order_by = 'Cost', order_order_asc = False, include_files = False, truncate_content = None): counts[j['Structure']['PDBFileID']] = counts.get(j['Structure']['PDBFileID'], 0) counts[j['Structure']['PDBFileID']] += 1 c += 1 colortext.warning('Counts by PDB ID:') pprint.pprint(counts) colortext.warning('Total count: {0}'.format(c))
def setup(): global pdb_file_paths # RCSB PDB_ID -> PDB file global rcsb_pdb_objects # RCSB PDB_ID -> PDB object global tina_pdb_objects # Tina's PDB_ID -> PDB object global tina_pdb_id_to_rcsb_pdb_id # Tina's PDB_ID -> RCSB PDB_ID global mutations_dataframe if not mutations_dataframe: setup_mutations_dataframe() # old_mutations_csv is missing some cases but has the mapping from pdb -> partner 1 name, partner 2 name old_mutations_csv = os.path.join('temp', 'mutations_Gsp1_old.txt') assert(os.path.exists('temp')) assert(os.path.exists(old_mutations_csv)) df = pandas.read_csv(old_mutations_csv, sep = '\t') tina_pdb_ids = sorted(set([p for p in df['pdb'].values])) rcsb_pdb_ids = set() for pdb_id in tina_pdb_ids: rcsb_pdb_ids.add(pdb_id[:4]) tina_pdb_id_to_rcsb_pdb_id[pdb_id] = pdb_id[:4] rcsb_pdb_ids = sorted(rcsb_pdb_ids) assert(rcsb_pdb_ids == sorted(set([p[:4] for p in mutations_dataframe['pdb'].values]))) rcsb_file_dir = '../../rawdata' for pdb_id in tina_pdb_ids: tina_pdb_objects[pdb_id] = PDB.from_filepath(os.path.join('temp', 'pdbs', '{0}.pdb'.format(pdb_id)), parse_ligands = True) for pdb_id in rcsb_pdb_ids: filename = '{0}.pdb'.format(pdb_id.upper()) pdb_file_paths[pdb_id.upper()] = os.path.join(rcsb_file_dir, filename) pdb_contents = download_pdb(pdb_id, rcsb_file_dir, silent = True, filename = filename) p = PDB(pdb_contents, parse_ligands = True) rcsb_pdb_objects[pdb_id] = p print('\nRosetta files ({0}) : {1}'.format(str(len(tina_pdb_ids)).rjust(2), ', '.join([s.rjust(5) for s in tina_pdb_ids]))) print('Original files ({0}) : {1}\n'.format(str(len(rcsb_pdb_ids)).rjust(2), ', '.join([s.rjust(5) for s in rcsb_pdb_ids]))) ppi_api = get_ppi_api() for pdb_id, pdb_file_path in pdb_file_paths.iteritems(): existing_records = ppi_api.DDG_db.execute_select('SELECT * FROM PDBFile WHERE ID=%s', parameters=(pdb_id,)) if existing_records: colortext.warning('The PDB file {0} exists in the database.'.format(pdb_id)) complex_ids = ppi_api.search_complexes_by_pdb_id(pdb_id) if complex_ids: colortext.warning('The PDB file {0} has associated complexes: {1}'.format(pdb_id, ', '.join(map(str, complex_ids)))) print('')
def fix_1AYE_InputFiles(prediction_set): '''This is a once-off function which should only be run once per prediction set as each run changes the mutfile and this change should only occur once.''' import pickle ddGdb = ddgdbapi.ddGDatabase() BadPredictions = sorted(set([(r['PredictionID'], r['Status']) for r in ddGdb.execute_select(''' SELECT Prediction.ID AS PredictionID, Status FROM Prediction INNER JOIN UserDataSetExperiment ON UserDataSetExperiment.ID=Prediction.UserDataSetExperimentID WHERE PredictionSet=%s AND PDBFileID='1AYE' ''', parameters=(prediction_set,))])) BadPredictionIDs = sorted(set([r[0] for r in BadPredictions])) print(BadPredictions) num_active = len([r for r in BadPredictions if r[1] == 'active']) num_queued = len([r for r in BadPredictions if r[1] == 'queued']) statuses = sorted(set([r[1] for r in BadPredictions])) if ('active' in statuses) or ('queued' in statuses): colortext.error("Cannot proceed - there are %d active jobs and %d queued in the list that need to be fixed up. Stop the DDG scheduler, remove the queued constraint, and rerun this function. " % (num_active, num_queued)) if num_active: print("%d active jobs: %s" % (num_active, ", ".join([str(r[0]) for r in BadPredictions if r[1] == 'active']))) if num_queued: print("%d queued jobs: %s" % (num_queued, ", ".join([str(r[0]) for r in BadPredictions if r[1] == 'queued']))) return for PredictionID in BadPredictionIDs: r = ddGdb.execute_select("SELECT InputFiles FROM Prediction WHERE ID=%s", parameters=(PredictionID,)) assert(len(r) == 1) r = r[0] InputFiles = pickle.loads(r['InputFiles']) assert(InputFiles.keys() == ['MUTFILE']) mutfile = InputFiles['MUTFILE'] colortext.message("\n%d" % PredictionID) colortext.warning('original') print(mutfile) lines = mutfile.split("\n") assert(lines[0].startswith('total')) num_muts = int(lines[0][5:]) assert(lines[1] == str(num_muts)) for x in range(2, num_muts + 2): mutline = lines[x] tokens = mutline.split() tokens[1] = str(int(tokens[1]) - 1) lines[x] = " ".join(tokens) new_mutfile = "\n".join(lines) colortext.warning('fixed') print(new_mutfile) p = pickle.dumps({'MUTFILE' : new_mutfile})
def retrieve_ligand_diagram(pdb_ligand_code): from PIL import Image file = BytesIO(urllib.urlopen('http://www.rcsb.org/pdb/images/{0}_600.gif'.format(pdb_ligand_code)).read()) img = Image.open(file) width, height = img.size if width < 100: # not a foolproof method - they may change the failure picture in future file = BytesIO(urllib.urlopen('http://www.rcsb.org/pdb/images/{0}_270.gif'.format(pdb_ligand_code)).read()) img = Image.open(file) width, height = img.size if width < 100: colortext.warning('Could not find a diagram for ligand {0}. It is possible that the URLs have changed.'.format(pdb_ligand_code)) return None file.seek(0) return file.read()
def load(): global sys_settings if not sys_settings: settings_file = os.path.splitext( os.path.abspath(__file__))[0] + '.json' if not os.path.exists(settings_file): create_template(settings_file) colortext.warning( '\nThe settings file {0} needs to be configured. Exiting.\n'. format(settings_file)) sys.exit(1) d = json.loads(read_file(settings_file)) sys_settings = NestedBunch(d) return sys_settings
def test_sifts_module(): failures = [] ddG_pdb_ids = ['107L','108L','109L','110L','111L','112L','113L','114L','115L','118L','119L','120L','122L','123L','125L','126L','127L','128L','129L','130L','131L','137L','149L','150L','151L','160L','161L','162L','163L','164L','165L','168L','169L','171L','172L','173L','190L','191L','192L','195L','196L','1A23','1A2I','1A2P','1A3Y','1A43','1A4Y','1A53','1A5E','1A70','1A7A','1A7H','1A7V','1AAL','1AAR','1AAZ','1ABE','1ACB','1ADO','1ADW','1AG2','1AG4','1AG6','1AIE','1AIN','1AJ3','1AJQ','1AKK','1AKM','1AM7','1AMQ','1ANF','1ANK','1ANT','1AO6','1AON','1AOZ','1APC','1APL','1APS','1AQH','1AR1','1ARR','1ATJ','1ATN','1AU1','1AUT','1AV1','1AVR','1AX1','1AXB','1AYE','1AYF','1AZP','1B0O','1B26','1B5M','1B8J','1BAH','1BAN','1BAO','1BCX','1BD8','1BET','1BF4','1BFM','1BGD','1BGL','1BJP','1BKE','1BKS','1BLC','1BMC','1BNI','1BNL','1BNS','1BNZ','1BOY','1BP2','1BPI','1BPL','1BPR','1BPT','1BRF','1BRG','1BRH','1BRI','1BRJ','1BRK','1BSA','1BSB','1BSC','1BSD','1BSE','1BSR','1BTA','1BTI','1BTM','1BUJ','1BVC','1BVU','1BZO','1C0L','1C17','1C2R','1C52','1C53','1C5G','1C6P','1C9O','1CAH','1CBW','1CDC','1CEA','1CEY','1CHK','1CHO','1CHP','1CLW','1CM7','1CMB','1CMS','1COA','1COK','1COL','1CPM','1CSP','1CTS','1CUN','1CUS','1CVW','1CX1','1CX8','1CYC','1CYO','1D0X','1D1G','1DAQ','1DDN','1DE3','1DEC','1DEQ','1DFO','1DFX','1DHN','1DIL','1DIV','1DJU','1DKG','1DKT','1DLC','1DM0','1DO9','1DPM','1DTD','1DTO','1DVC','1DVF','1DVV','1DXX','1DYA','1DYB','1DYC','1DYD','1DYE','1DYF','1DYG','1DYJ','1E21','1E6K','1E6L','1E6M','1E6N','1EDH','1EFC','1EG1','1EHK','1EKG','1EL1','1ELV','1EMV','1EQ1','1ERU','1ESF','1ETE','1EVQ','1EW4','1EXG','1EZA','1F88','1FAJ','1FAN','1FC1','1FEP','1FGA','1FKB','1FKJ','1FLV','1FMK','1FMM','1FNF','1FR2','1FRD','1FTG','1FTT','1FXA','1G6N','1G6V','1G6W','1GA0','1GAD','1GAL','1GAY','1GAZ','1GB0','1GB2','1GB3','1GB7','1GBX','1GD1','1GF8','1GF9','1GFA','1GFE','1GFG','1GFH','1GFJ','1GFK','1GFL','1GFR','1GFT','1GFU','1GFV','1GKG','1GLH','1GLM','1GOB','1GPC','1GQ2','1GRL','1GRX','1GSD','1GTM','1GTX','1GUY','1GXE','1H09','1H0C','1H2I','1H7M','1H8V','1HA4','1HCD','1HEM','1HEN','1HEO','1HEP','1HEQ','1HER','1HEV','1HFY','1HFZ','1HGH','1HGU','1HIB','1HIC','1HIO','1HIX','1HK0','1HME','1HML','1HNG','1HNL','1HOR','1HQK','1HTI','1HUE','1HXN','1HYN','1HYW','1HZ6','1I4N','1I5T','1IAR','1IC2','1IDS','1IFB','1IFC','1IGS','1IGV','1IHB','1IMQ','1INQ','1INU','1IO2','1IOB','1IOF','1IOJ','1IR3','1IRL','1IRO','1ISK','1IX0','1J0X','1J4S','1J7N','1JAE','1JBK','1JHN','1JIW','1JJI','1JKB','1JNK','1JTD','1JTG','1JTK','1K23','1K3B','1K40','1K9Q','1KA6','1KBP','1KDN','1KDU','1KDX','1KEV','1KFD','1KFW','1KJ1','1KKJ','1KTQ','1KUM','1KVA','1KVB','1KVC','1L00','1L02','1L03','1L04','1L05','1L06','1L07','1L08','1L09','1L10','1L11','1L12','1L13','1L14','1L15','1L16','1L17','1L18','1L19','1L20','1L21','1L22','1L23','1L24','1L33','1L34','1L36','1L37','1L38','1L40','1L41','1L42','1L43','1L44','1L45','1L46','1L47','1L48','1L49','1L50','1L51','1L52','1L53','1L54','1L55','1L56','1L57','1L59','1L60','1L61','1L62','1L63','1L65','1L66','1L67','1L68','1L69','1L70','1L71','1L72','1L73','1L74','1L75','1L76','1L77','1L85','1L86','1L87','1L88','1L89','1L90','1L91','1L92','1L93','1L94','1L95','1L96','1L97','1L98','1L99','1LAV','1LAW','1LBI','1LFO','1LHH','1LHI','1LHJ','1LHK','1LHL','1LHM','1LHP','1LLI','1LMB','1LOZ','1LPS','1LRA','1LRE','1LRP','1LS4','1LSN','1LUC','1LVE','1LYE','1LYF','1LYG','1LYH','1LYI','1LYJ','1LZ1','1M7T','1MAX','1MBD','1MBG','1MCP','1MGR','1MJC','1MLD','1MSI','1MUL','1MX2','1MX4','1MX6','1MYK','1MYL','1N02','1N0J','1NAG','1NM1','1NZI','1OA2','1OA3','1OCC','1OH0','1OIA','1OKI','1OLR','1OMU','1ONC','1OPD','1ORC','1OSA','1OSI','1OTR','1OUA','1OUB','1OUC','1OUD','1OUE','1OUF','1OUG','1OUH','1OUI','1OUJ','1OVA','1P2M','1P2N','1P2O','1P2P','1P2Q','1P3J','1PAH','1PBA','1PCA','1PDO','1PGA','1PHP','1PII','1PIN','1PK2','1PMC','1POH','1PPI','1PPN','1PPP','1PQN','1PRE','1PRR','1Q5Y','1QEZ','1QGV','1QHE','1QJP','1QK1','1QLP','1QLX','1QM4','1QND','1QQR','1QQV','1QT6','1QT7','1QU0','1QU7','1QUW','1R2R','1RBN','1RBP','1RBR','1RBT','1RBU','1RBV','1RCB','1RDA','1RDB','1RDC','1REX','1RGC','1RGG','1RH1','1RHD','1RHG','1RIL','1RIS','1RN1','1ROP','1RRO','1RTB','1RTP','1RX4','1S0W','1SAK','1SAP','1SCE','1SEE','1SFP','1SHF','1SHG','1SHK','1SMD','1SPD','1SPH','1SSO','1STF','1STN','1SUP','1SYC','1SYD','1SYE','1SYG','1T3A','1T7C','1T8L','1T8M','1T8N','1T8O','1TBR','1TCA','1TCY','1TEN','1TFE','1TGN','1THQ','1TI5','1TIN','1TIT','1TLA','1TML','1TMY','1TOF','1TPE','1TPK','1TTG','1TUP','1TUR','1U5P','1UBQ','1UCU','1UOX','1URK','1UW3','1UWO','1UZC','1V6S','1VAR','1VFB','1VIE','1VQA','1VQB','1VQC','1VQD','1VQE','1VQF','1VQG','1VQH','1VQI','1VQJ','1W3D','1W4E','1W4H','1W99','1WIT','1WLG','1WPW','1WQ5','1WQM','1WQN','1WQO','1WQP','1WQQ','1WQR','1WRP','1WSY','1XAS','1XY1','1Y4Y','1Y51','1YAL','1YAM','1YAN','1YAO','1YAP','1YAQ','1YCC','1YEA','1YGV','1YHB','1YMB','1YNR','1YPA','1YPB','1YPC','1YPI','1Z1I','1ZNJ','200L','206L','216L','217L','219L','221L','224L','227L','230L','232L','233L','235L','236L','237L','238L','239L','240L','241L','242L','243L','244L','246L','247L','253L','254L','255L','2A01','2A36','2ABD','2AC0','2ACE','2ACY','2ADA','2AFG','2AIT','2AKY','2ASI','2ATC','2B4Z','2BBM','2BQA','2BQB','2BQC','2BQD','2BQE','2BQF','2BQG','2BQH','2BQI','2BQJ','2BQK','2BQM','2BQN','2BQO','2BRD','2CBR','2CHF','2CI2','2CPP','2CRK','2CRO','2DQJ','2DRI','2EQL','2FAL','2FHA','2FX5','2G3P','2GA5','2GSR','2GZI','2HEA','2HEB','2HEC','2HED','2HEE','2HEF','2HIP','2HMB','2HPR','2IFB','2IMM','2L3Y','2L78','2LZM','2MBP','2MLT','2NUL','2OCJ','2PDD','2PEC','2PEL','2PRD','2Q98','2RBI','2RN2','2RN4','2SNM','2SOD','2TMA','2TRT','2TRX','2TS1','2WSY','2ZAJ','2ZTA','3BCI','3BCK','3BD2','3BLS','3CHY','3D2A','3ECA','3FIS','3HHR','3MBP','3PGK','3PRO','3PSG','3SSI','3TIM','3VUB','451C','487D','4BLM','4CPA','4GCR','4LYZ','4SGB','4TLN','4TMS','5AZU','5CPV','5CRO','5MDH','5PEP','6TAA','7AHL','7PTI','8PTI','8TIM','9INS','9PCY',] for no_xml_case in ['1GTX', '1SEE', '1UOX', '1WSY', '1YGV', '2MBP']: ddG_pdb_ids.remove(no_xml_case) for bad_sifts_mapping_case in ['1N02', '487D']: ddG_pdb_ids.remove(bad_sifts_mapping_case) for no_pdb_uniprot_mapping_case in ['2IMM']: ddG_pdb_ids.remove(no_pdb_uniprot_mapping_case) ddG_pdb_ids = ['1GTX', '1SEE', '1UOX', '1WSY', '1YGV', '2MBP'] ddG_pdb_ids = ['1N02', '487D'] + ['2IMM'] count = 1 num_cases = len(ddG_pdb_ids) for pdb_id in ddG_pdb_ids: try: print('Case %d/%d: %s' % (count, num_cases, pdb_id)) sifts_map = SIFTS.retrieve(pdb_id, cache_dir = cache_dir, acceptable_sequence_percentage_match = 80.0) except MissingSIFTSRecord: colortext.warning('No SIFTS XML exists for %s.' % pdb_id) except BadSIFTSMapping: colortext.warning('The SIFTS mapping for %s was considered a bad mapping at the time of writing.' % pdb_id) except NoSIFTSPDBUniParcMapping: colortext.warning('The SIFTS file for %s does not map to UniParc sequences at the time of writing.' % pdb_id) except Exception, e: colortext.warning(str(e)) colortext.error(traceback.format_exc()) failures.append(pdb_id) count += 1
def test_sequences(b, sequences): failed_cases = [] c = 0 for sequence in sequences: try: c += 1 colortext.message('\n{0}/{1}: {2}'.format(c, len(sequences), sequence)) hits = b.by_sequence(sequence) if hits: colortext.warning('{0} hits: {1}'.format(len(hits), ','.join(hits))) else: colortext.warning('No hits') except Exception, e: colortext.error('FAILED') failed_cases.append((sequence, str(e), traceback.format_exc()))
def updateEvents(self, calendar_id, newEvents): currentEvents = self.getEventsTable(calendar_id) #colortext.message(newEvents) #colortext.warning(currentEvents) # Events to remove toRemove = [] for startdateTitle, event in sorted(currentEvents.iteritems()): if event["title"].find("birthday") != -1: # Don't remove birthdays continue if newEvents.get(startdateTitle): newEvent = newEvents[startdateTitle] if newEvent["enddate"] == event["enddate"]: if event["location"].startswith(newEvent["location"]): if str(newEvent["title"]) == str(event["title"]): # Don't remove events which are in both newEvents and the calendar continue # Remove events which are on the calendar but not in newEvents toRemove.append(startdateTitle) # Events to add toAdd = [] for startdateTitle, event in sorted(newEvents.iteritems()): if currentEvents.get(startdateTitle): currentEvent = currentEvents[startdateTitle] if currentEvent["enddate"] == event["enddate"]: if currentEvent["location"].startswith(event["location"]): if str(currentEvent["title"]) == str(event["title"]): # Don't add events which are in both newEvents and the calendar continue # Add events which are in newEvents but not on the calendar toAdd.append(startdateTitle) if toRemove: colortext.error("Removing these %d events:" % len(toRemove)) for dtTitle in toRemove: colortext.warning(dtTitle) self.removeEvent(calendar_id, currentEvents[dtTitle]["event"].id) if toAdd: colortext.message("Adding these %d events:" % len(toAdd)) for dtTitle in toAdd: newEvent = newEvents[dtTitle] #print(dtTitle, newEvent) self.addNewEvent(calendar_id, dtTitle[0], newEvent["enddate"], newEvent["location"], newEvent["title"])
def AddPublishedDDGsToAnalysisTables(self): ddGdb = self.ddGdb analysis_tables = self.analysis_tables for AnalysisSet, analysis_table in analysis_tables.iteritems(): published_dataset_scores = PublishedDatasetScores(ddGdb, AnalysisSet).scores for analysis_point in analysis_table.points: if analysis_point.section and analysis_point.recordnumber: section = analysis_point.section recordnumber = analysis_point.recordnumber if published_dataset_scores.get(section) and published_dataset_scores[section].get(recordnumber): published_dataset_score = published_dataset_scores[section][recordnumber]["PublishedDatasetDDG"] analysis_point.DatasetPublishedDDG = published_dataset_score else: if self.quiet_level >= 1: colortext.warning("No published dataset score found for %s-%s-%s." % (AnalysisSet, Section, RecordNumber))
def test_pdb_files(b, pdb_ids): failed_cases = [] c = 0 for pdb_id in pdb_ids: try: c += 1 colortext.message('\n{0}/{1}: {2}'.format(c, len(pdb_ids), pdb_id)) hits = b.by_pdb(pdb_id) if hits: colortext.warning('{0} hits: {1}'.format(len(hits), ','.join(hits))) else: colortext.warning('No hits') except Exception, e: colortext.error('FAILED') failed_cases.append((pdb_id, str(e), traceback.format_exc()))
def add_company_quarter(self, company_name, quarter_name, dt, calendar_id = 'notices'): '''Adds a company_name quarter event to the calendar. dt should be a date object. Returns True if the event was added.''' assert(calendar_id in self.configured_calendar_ids.keys()) calendarId = self.configured_calendar_ids[calendar_id] quarter_name = quarter_name.title() quarter_numbers = { 'Spring' : 1, 'Summer' : 2, 'Fall' : 3, 'Winter' : 4 } assert(quarter_name in quarter_numbers.keys()) start_time = datetime(year=dt.year, month=dt.month, day=dt.day, hour=0, minute=0, second=0, tzinfo=self.timezone) + timedelta(days = -1) end_time = start_time + timedelta(days = 3, seconds = -1) summary = '%s %s Quarter begins' % (company_name, quarter_name) # Do not add the quarter multiple times events = self.get_events(start_time.isoformat(), end_time.isoformat(), ignore_cancelled = True) for event in events: if event.summary.find(summary) != -1: return False event_body = { 'summary' : summary, 'description' : summary, 'start' : {'date' : dt.isoformat(), 'timeZone' : self.timezone_string}, 'end' : {'date' : dt.isoformat(), 'timeZone' : self.timezone_string}, 'status' : 'confirmed', 'gadget' : { 'display' : 'icon', 'iconLink' : 'https://guybrush.ucsf.edu/images/Q%d_32.png' % quarter_numbers[quarter_name], 'title' : summary, }, 'extendedProperties' : { 'shared' : { 'event_type' : '%s quarter' % company_name, 'quarter_name' : quarter_name } } } colortext.warning('\n%s\n' % pprint.pformat(event_body)) created_event = self.service.events().insert(calendarId = self.configured_calendar_ids[calendar_id], body = event_body).execute() return True
def CreateAnalysisTables(self): ddGdb = self.ddGdb PredictionSet = self.PredictionSet predictions = PredictionScores(ddGdb, PredictionSet, self.ddG_score_type, score_cap = self.score_cap) predicted_scores = predictions.Predictions s = "Analyzing %d predictions in PredictionSet '%s' for UserDataSet '%s'. " % (predictions.NumberOfPredictions, predictions.PredictionSet.replace("_", "\_"), predictions.UserDataSetName) if self.score_cap: s += "Running analysis over the following analysis sets: '%s' with predicted scores capped at +-%0.2f." % (join(predictions.AnalysisSets, "', '"), self.score_cap) else: s += "Running analysis over the following analysis sets: '%s'." % (join(predictions.AnalysisSets, "', '")) self.description.append(("black", s)) if self.quiet_level >= 1: colortext.message("Analyzing %d predictions in PredictionSet '%s' for UserDataSet '%s'." % (predictions.NumberOfPredictions, predictions.PredictionSet, predictions.UserDataSetName)) colortext.message("Running analysis over the following analysis sets: '%s'." % (join(predictions.AnalysisSets, "', '"))) analysis_tables = {} # Analyze data for for AnalysisSet in predictions.AnalysisSets: analysis_table = AnalysisTable() experiments = UserDataSetExperimentalScores(ddGdb, predictions.UserDataSetID, AnalysisSet) count = 0 numMissing = 0 for section, sectiondata in sorted(experiments.iteritems()): for recordnumber, record_data in sorted(sectiondata.iteritems()): count += 1 PDB_ID = record_data["PDB_ID"] ExperimentID = record_data["ExperimentID"] ExperimentalDDG = record_data["ExperimentalDDG"] if predicted_scores.get(ExperimentID) and predicted_scores[ExperimentID].get(PDB_ID): PredictedDDG = predicted_scores[ExperimentID][PDB_ID]["PredictedDDG"] analysis_table.add(AnalysisPoint(ExperimentalDDG, PredictedDDG, ExperimentID = ExperimentID, PDB_ID = PDB_ID, section = section, recordnumber = recordnumber)) else: numMissing += 1 if numMissing > 0 and self.quiet_level >= 1: self.description.append(("Bittersweet", "Missing %d predictions out of %d records for analysis set %s." % (numMissing, count, AnalysisSet))) colortext.warning("Missing %d predictions out of %d records for analysis set %s." % (numMissing, count, AnalysisSet)) analysis_tables[AnalysisSet] = analysis_table self.analysis_tables = analysis_tables
def remove_all_cancelled_events(self, calendar_ids = []): for calendar_id in calendar_ids or self.calendar_ids: colortext.message('Removing cancelled events in %s' % calendar_id) events = self.service.events().list(calendarId = self.configured_calendar_ids[calendar_id]).execute() print(len(events['items'])) for event in events['items']: dt = None nb = DeepNonStrictNestedBunch(event) if nb.status == 'cancelled': if nb.recurringEventId: colortext.warning(nb.recurringEventId) # Retrieve all occurrences of the recurring event within the timeframe start_time = datetime(year=2010, month=1, day=1, tzinfo=self.timezone).isoformat() end_time = datetime(year=2015, month=1, day=1, tzinfo=self.timezone).isoformat() for e in self.get_recurring_events(calendar_id, nb.id, start_time, end_time, maxResults = 10): print(e) else: colortext.warning(nb)
def print_existing_experimental_data(): # These PDB files existed in the database before the import so I am interested to see whether any of the experimental # data matches the requested predictions print('') ppi_api = get_ppi_api() for pdb_id in ['1A2K', '1K5D', '1I2M']: colortext.message(pdb_id) complex_ids = ppi_api.search_complexes_by_pdb_id(pdb_id) if complex_ids: assert(len(complex_ids) == 1) complex_id = complex_ids[0] colortext.warning('Complex #{0}'.format(complex_id)) pprint.pprint(ppi_api.get_complex_details(complex_id)) mutation_records = mutations_dataframe[mutations_dataframe['pdb'].str.contains(pdb_id)]# mutations_dataframe.loc[mutations_dataframe['pdb'][0:4] == pdb_id] with pandas.option_context('display.max_rows', None, 'display.max_columns', None): print mutation_records # There is no experimental binding affinity data at present assert(not(ppi_api.DDG_db.execute_select('SELECT * FROM PPMutagenesisPDBMutation WHERE PPComplexID IN (202, 119, 176) ORDER BY PPComplexID, Chain, ResidueID, MutantAA')))
def import_structures(): setup() ppi_api = get_ppi_api() complex_definitions = json.loads(read_file('tinas_complexes.json')) for tina_pdb_id, complex_structure_definition_pair in sorted(complex_definitions.iteritems()): #if tina_pdb_id != '1WA52': # continue colortext.warning(tina_pdb_id) del complex_structure_definition_pair['Structure']['file_path'] complex_structure_definition_pair['Structure']['pdb_object'] = tina_pdb_objects[tina_pdb_id] pdb_set = ppi_api.add_complex_structure_pair(complex_structure_definition_pair, keywords = ['GSP1'], force = True, trust_database_content = False, allow_missing_params_files = False, debug = False) if pdb_set['success'] == False: print(pdb_set['error']) if 'possible_matches' in pdb_set: for d in pdb_set['possible_matches']: colortext.warning(d['ID']) print('{0}, {1}, {2}'.format(d['LName'].encode('utf-8').strip(), d['LShortName'].encode('utf-8').strip(), d['LHTMLName'].encode('utf-8').strip())) print('{0}, {1}, {2}'.format(d['RName'].encode('utf-8').strip(), d['RShortName'].encode('utf-8').strip(), d['RHTMLName'].encode('utf-8').strip())) create_project_pdb_records()
def main(): # Create up the database session dbi = DatabaseInterface(can_email = True) tsession = dbi.get_session() # Create a map from usernames to the database IDs (typically initials) user_map = {} for u in tsession.query(Users): user_map[u.lab_username] = u.ID # Read the import path from the database colortext.message('\nPrimers import script') colortext.pcyan('Database admin contacts: {0}'.format(', '.join(dbi.get_admin_contacts()))) colortext.warning('Registered users: {0}\n'.format(', '.join( ['{0} ({1})'.format(v, k) for k, v in sorted(user_map.iteritems(), key = lambda x: x[1])]))) errors = [] import_path = tsession.query(DBConstants).filter(DBConstants.Parameter == u'import_path').one().Value import_path_folders = sorted([d for d in os.listdir(import_path) if os.path.isdir(os.path.join(import_path,d))]) for ipf in import_path_folders: if ipf in user_map: user_folder = os.path.join(import_path, ipf) user_id = user_map[ipf] primers_file = os.path.join(user_folder, 'primers.tsv') if os.path.exists(primers_file): case_errors = [] try: parse(dbi, primers_file, user_id, case_errors) if case_errors: errors.append("Errors occurred processing '{0}':\n\t{1}".format(primers_file, '\n\t'.join(case_errors))) colortext.warning(errors[-1]) except Exception, e: errors.append("Errors occurred processing '{0}': {1}\n\t{2}\n{3}".format(primers_file, str(e), '\n\t'.join(case_errors), traceback.format_exc())) colortext.warning('Error: {0}\n{1}'.format(str(e), traceback.format_exc()))
def AddPublishedDDGsToAnalysisTables(self): ddGdb = self.ddGdb analysis_tables = self.analysis_tables for AnalysisSet, analysis_table in analysis_tables.iteritems(): published_dataset_scores = PublishedDatasetScores( ddGdb, AnalysisSet).scores for analysis_point in analysis_table.points: if analysis_point.section and analysis_point.recordnumber: section = analysis_point.section recordnumber = analysis_point.recordnumber if published_dataset_scores.get( section) and published_dataset_scores[section].get( recordnumber): published_dataset_score = published_dataset_scores[ section][recordnumber]["PublishedDatasetDDG"] analysis_point.DatasetPublishedDDG = published_dataset_score else: if self.quiet_level >= 1: colortext.warning( "No published dataset score found for %s-%s-%s." % (AnalysisSet, Section, RecordNumber))
def _runRScript(RScript): rscriptname = rosettahelper.writeTempFile(".", RScript) #p = subprocess.Popen(["/opt/R-2.15.1/bin/R","CMD", "BATCH", rscriptname]) p = subprocess.Popen(["R", "CMD", "BATCH", rscriptname]) while True: time.sleep(0.3) errcode = p.poll() if errcode != None: break rout = "%s.Rout" % rscriptname delete_file(rscriptname) #colortext.warning(rosettahelper.readFile(rout)) rout_contents = None if os.path.exists(rout): rout_contents = rosettahelper.readFile(rout) if errcode != 0: if os.path.exists(rout): colortext.warning(rout_contents) delete_file(rout) raise colortext.Exception("The R script failed with error code %d." % errcode) delete_file(rout) return rout_contents
def error_by_error_scatterplot(output_directory, file_prefix, df, reference_series_index, x_series_index, y_series_index, x_color, y_color, x_series_name = None, y_series_name = None, plot_title = '', x_axis_label = '', y_axis_label = '', similarity_range = 0.25, add_similarity_range_annotation = True, shape_by_category = False, shape_category_series_index = None, shape_category_title = 'Case', label_series_index = None, label_outliers = True, use_geom_text_repel = True, ): """ Creates a scatterplot of error versus error intended to show which computational method (X or Y) has the least amount of error relative to a reference series. The difference vectors (reference_series - x_series, reference_series - y_series) are created and these differences (errors) are plotted against each other. :param output_directory: The output directory. :param file_prefix: A prefix for the generated files. A CSV file with the plot points, the R script, and the R output is saved along with the plot itself. :param df: A pandas dataframe. Note: The dataframe is zero-indexed. :param reference_series_index: The numerical index of the reference series e.g. experimental data. :param x_series_index: The numerical index of the X-axis series e.g. predictions from a computational method. :param y_series_index: The numerical index of the Y-axis series e.g. predictions from a second computational method. :param x_color: The color of the "method X is better" points. :param y_color: The color of the "method Y is better" points. :param x_series_name: A name for the X-series which is used in the the classification legend. :param y_series_name: A name for the Y-series which is used in the the classification legend. :param plot_title: Plot title. :param x_axis_label: X-axis label. :param y_axis_label: Y-axis label. :param similarity_range: A point (x, y) is considered as similar if |x - y| <= similarity_range. :param add_similarity_range_annotation: If true then the similarity range is included in the plot. :param shape_by_category: Boolean. If set then points are shaped by the column identified with shape_category_series_index. Otherwise, points are shaped by classification ("X is better", "Y is better", or "Similar") :param shape_category_series_index: The numerical index of the series used to choose point shapes. :param shape_category_title: The title of the shape legend. :param label_series_index: The numerical index of the series label_series_index :param label_outliers: Boolean. If set then label outliers using the column identified with label_series_index. :param use_geom_text_repel: Boolean. If set then the ggrepel package is used to avoid overlapping labels. This function was adapted from the Kortemme Lab covariation benchmark (https://github.com/Kortemme-Lab/covariation). todo: I need to check that ggplot2 is respecting the color choices. It may be doing its own thing. """ try: os.mkdir(output_directory) except: pass assert (os.path.exists(output_directory)) if not isinstance(shape_category_series_index, int): shape_by_category = False if not isinstance(label_series_index, int): label_outliers = False assert(x_series_name != None and y_series_name != None) df = df.copy() headers = df.columns.values num_categories = len(set(df.ix[:, shape_category_series_index].values)) legal_shapes = range(15,25+1) + range(0,14+1) if num_categories > len(legal_shapes): colortext.warning('Too many categories ({0}) to plot using meaningful shapes.'.format(num_categories)) shape_by_category = False else: legal_shapes = legal_shapes[:num_categories] df['X_error'] = abs(df[headers[reference_series_index]] - df[headers[x_series_index]]) x_error_index = len(df.columns.values) - 1 df['Y_error'] = abs(df[headers[reference_series_index]] - df[headers[y_series_index]]) y_error_index = len(df.columns.values) - 1 # Get the list of domains common to both runs df['Classification'] = df.apply(lambda r: _classify_smallest_error(r['X_error'], r['Y_error'], similarity_range, x_series_name, y_series_name), axis = 1) error_classification_index = len(df.columns.values) - 1 # Create the R script boxplot_r_script = ''' library(ggplot2) library(gridExtra) library(scales) library(qualV) library(grid)''' if use_geom_text_repel: boxplot_r_script +=''' library(ggrepel) # install with 'install.packages("ggrepel")' inside the R interactive shell. ''' boxplot_r_script += ''' # PNG generation png('%(file_prefix)s.png', width=2560, height=2048, bg="white", res=600) txtalpha <- 0.8 redtxtalpha <- 0.8 %(png_plot_commands)s ''' xy_table_filename = '{0}.txt'.format(file_prefix) xy_table_filepath = os.path.join(output_directory, xy_table_filename) data_table = df.to_csv(header = True, index = False) write_file(xy_table_filepath, data_table) main_plot_script = ''' # Set the margins par(mar=c(5, 5, 1, 1)) xy_data <- read.csv('%(xy_table_filename)s', header=T) names(xy_data)[%(x_error_index)d + 1] <- "xerrors" names(xy_data)[%(y_error_index)d + 1] <- "yerrors" ''' if label_outliers: main_plot_script +='''names(xy_data)[%(label_series_index)d + 1] <- "outlier_labels"''' main_plot_script +=''' names(xy_data)[%(shape_category_series_index)d + 1] <- "categories" xy_data[%(x_error_index)d + 1] xy_data[%(y_error_index)d + 1] # coefs contains two values: (Intercept) and yerrors coefs <- coef(lm(xerrors~yerrors, data = xy_data)) fitcoefs = coef(lm(xerrors~0 + yerrors, data = xy_data)) fitlmv_yerrors <- as.numeric(fitcoefs[1]) lmv_intercept <- as.numeric(coefs[1]) lmv_yerrors <- as.numeric(coefs[2]) lm(xy_data$yerrors~xy_data$xerrors) xlabel <- "%(x_axis_label)s" ylabel <- "%(y_axis_label)s" plot_title <- "%(plot_title)s" rvalue <- cor(xy_data$yerrors, xy_data$xerrors) # Alphabetically, "Similar" < "X" < "Y" so the logic below works countsim <- paste("Similar =", dim(subset(xy_data, Classification=="Similar"))[1]) countX <- paste("%(x_series_name)s =", dim(subset(xy_data, Classification=="%(x_series_name)s"))[1]) countY <- paste("%(y_series_name)s =", dim(subset(xy_data, Classification=="%(y_series_name)s"))[1]) countX countY countsim # Set graph limits and the position for the correlation value minx <- min(0.0, min(xy_data$xerrors) - 0.1) miny <- min(0.0, min(xy_data$yerrors) - 0.1) maxx <- max(1.0, max(xy_data$xerrors) + 0.1) maxy <- max(1.0, max(xy_data$yerrors) + 0.1) # Create a square plot (x-range = y-range) minx <- min(minx, miny) miny <- minx maxx <- max(maxx, maxy) maxy <- maxx xpos <- maxx / 25.0 ypos <- maxy - (maxy / 25.0) ypos_2 <- maxy - (2 * maxy / 25.0) plot_scale <- scale_color_manual( "Counts", values = c( "Similar" = '#444444', "%(x_series_name)s" = '%(x_color)s', "%(y_series_name)s" ='%(y_color)s'), labels = c( "Similar" = countsim, "%(x_series_name)s" = countX, "%(y_series_name)s" = countY) )''' if add_similarity_range_annotation: main_plot_script += ''' # Polygon denoting the similarity range. We turn off plot clipping below (gt$layout$clip) so we need to be more exact than using 4 points when defining the region boxy_mc_boxface <- data.frame( X = c(minx - 0, maxx - %(similarity_range)f, maxx + 0, maxx + 0, 0 + %(similarity_range)f, 0), Y = c(minx - 0 + %(similarity_range)f, maxx + 0, maxx + 0, maxx + 0 -%(similarity_range)f, 0, 0 ) )''' else: main_plot_script += ''' # Polygon denoting the similarity range. We turn off plot clipping below (gt$layout$clip) so we need to be more exact than using 4 points when defining the region boxy_mc_boxface <- data.frame( X = c(minx - 1, maxx + 1, maxx + 1, minx - 1), Y = c(minx - 1 + %(similarity_range)f, maxx + 1 + %(similarity_range)f, maxx + 1 - %(similarity_range)f, minx - 1 - %(similarity_range)f) )''' if shape_by_category: main_plot_script += ''' # Plot p <- qplot(main="", xerrors, yerrors, data=xy_data, xlab=xlabel, ylab=ylabel, alpha = I(txtalpha), shape=factor(categories), col=factor(Classification)) +''' else: main_plot_script += ''' # Plot p <- qplot(main="", xerrors, yerrors, data=xy_data, xlab=xlabel, ylab=ylabel, alpha = I(txtalpha), shape=factor(Classification), col=factor(Classification)) +''' main_plot_script += ''' geom_polygon(data=boxy_mc_boxface, aes(X, Y), fill = "#bbbbbb", alpha = 0.4, color = "darkseagreen", linetype="blank", inherit.aes = FALSE, show.legend = FALSE) + plot_scale + geom_point() + guides(col = guide_legend()) + labs(title = "%(plot_title)s") + theme(plot.title = element_text(color = "#555555", size=rel(0.75))) + theme(axis.title = element_text(color = "#555555", size=rel(0.6))) + theme(legend.title = element_text(color = "#555555", size=rel(0.45)), legend.text = element_text(color = "#555555", size=rel(0.4))) + coord_cartesian(xlim = c(minx, maxx), ylim = c(miny, maxy)) + # set the graph limits annotate("text", hjust=0, size = 2, colour="#222222", x = xpos, y = ypos, label = sprintf("R = %%0.2f", round(rvalue, digits = 4))) + # add correlation text; hjust=0 sets left-alignment. Using annotate instead of geom_text avoids blocky text caused by geom_text being run multiple times over the series''' if label_outliers: if use_geom_text_repel: main_plot_script += ''' # Label outliers geom_text_repel(size=1.5, segment.size = 0.15, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors <= maxx / 2 & yerrors >=maxy/2), aes(xerrors, yerrors-maxy/100, label=outlier_labels)) + geom_text_repel(size=1.5, segment.size = 0.15, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors <= maxx / 2 & yerrors < maxy/2), aes(xerrors, yerrors+2*maxy/100, label=outlier_labels)) + geom_text_repel(size=1.5, segment.size = 0.15, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors > maxx / 2 & yerrors >=maxy/2), aes(xerrors, yerrors-maxy/100, label=outlier_labels)) + geom_text_repel(size=1.5, segment.size = 0.15, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors > maxx / 2 & yerrors < maxy/2), aes(xerrors, yerrors+2*maxy/100, label=outlier_labels)) +''' else: main_plot_script += ''' # Label outliers geom_text(hjust = 0, size=1.5, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors <= maxx / 2 & yerrors >=maxy/2), aes(xerrors, yerrors-maxy/100, label=outlier_labels)) + geom_text(hjust = 0, size=1.5, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors <= maxx / 2 & yerrors < maxy/2), aes(xerrors, yerrors+2*maxy/100, label=outlier_labels)) + geom_text(hjust = 1, size=1.5, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors > maxx / 2 & yerrors >=maxy/2), aes(xerrors, yerrors-maxy/100, label=outlier_labels)) + geom_text(hjust = 1, size=1.5, color="#000000", alpha=0.6, data=subset(xy_data, abs(yerrors - xerrors) > maxx/3 & xerrors > maxx / 2 & yerrors < maxy/2), aes(xerrors, yerrors+2*maxy/100, label=outlier_labels)) +''' counts_title = 'Counts' if add_similarity_range_annotation: counts_title += '*' main_plot_script += ''' #geom_text(hjust = 0, size=1.5, color="#000000", alpha=0.6, data=subset(xy_data, abs(yvalues - xvalues) > 2 & xvalues <= 0), aes(xvalues, yvalues+0.35, label=Origin_of_peptide), check_overlap = TRUE) + # label outliers #geom_text(hjust = 1, size=1.5, color="#000000", alpha=0.6, data=subset(xy_data, abs(yvalues - xvalues) > 2 & xvalues > 0), aes(xvalues, yvalues+0.35, label=Origin_of_peptide), check_overlap = TRUE) + # label outliers scale_colour_manual('%(counts_title)s', values = c('#444444', '%(x_color)s', '%(y_color)s'), labels = c( "Similar" = countsim, "%(x_series_name)s" = countX, "%(y_series_name)s" = countY)) +''' if shape_by_category: legal_shapes_str = ', '.join(map(str, legal_shapes)) main_plot_script += ''' scale_shape_manual('%(shape_category_title)s', values = c(%(legal_shapes_str)s), labels = c( "Similar" = countsim, "%(x_series_name)s" = countX, "%(y_series_name)s" = countY))''' else: main_plot_script += ''' scale_shape_manual('%(counts_title)s', values = c(18, 16, 15), labels = c( "Similar" = countsim, "%(x_series_name)s" = countX, "%(y_series_name)s" = countY))''' if add_similarity_range_annotation: main_plot_script += '''+ # Add a caption annotation_custom(grob = textGrob(gp = gpar(fontsize = 5), hjust = 0, sprintf("* Similar \\u225d \\u00b1 %%0.2f", round(%(similarity_range)f, digits = 2))), xmin = maxx + (2 * maxx / 10), ymin = -1, ymax = -1)''' main_plot_script += ''' # Plot graph p ''' if add_similarity_range_annotation: main_plot_script += ''' # Code to override clipping gt <- ggplot_gtable(ggplot_build(p)) gt$layout$clip[gt$layout$name=="panel"] <- "off" grid.draw(gt)''' main_plot_script +=''' dev.off() ''' # Create the R script plot_type = 'png' png_plot_commands = main_plot_script % locals() boxplot_r_script = boxplot_r_script % locals() r_script_filename = '{0}.R'.format(file_prefix) r_script_filepath = os.path.join(output_directory, r_script_filename) write_file(r_script_filepath, boxplot_r_script) # Run the R script run_r_script(r_script_filename, cwd = output_directory)
def determine_structure_scores(DDG_api, skip_if_we_have_pairs = 50): pp = pprint.PrettyPrinter(indent=4) ddGdb = DDG_api.ddGDB ddGdb_utf = ddgdbapi.ddGDatabase(use_utf = True) # Get the list of completed prediction set completed_prediction_sets = get_completed_prediction_sets(DDG_api) print(completed_prediction_sets) # Create the mapping from the old score types to the ScoreMethod record IDs ScoreMethodMap = {} results = ddGdb_utf.execute('SELECT * FROM ScoreMethod') for r in results: if r['MethodName'] == 'Global' and r['MethodType'] == 'Protocol 16': ScoreMethodMap[("kellogg", "total")] = r['ID'] if r['Authors'] == 'Noah Ollikainen': if r['MethodName'] == 'Local' and r['MethodType'] == 'Position' and r['Parameters'] == u'8Å radius': ScoreMethodMap[("noah_8,0A", "positional")] = r['ID'] if r['MethodName'] == 'Local' and r['MethodType'] == 'Position (2-body)' and r['Parameters'] == u'8Å radius': ScoreMethodMap[("noah_8,0A", "positional_twoscore")] = r['ID'] if r['MethodName'] == 'Global' and r['MethodType'] == 'By residue' and r['Parameters'] == u'8Å radius': ScoreMethodMap[("noah_8,0A", "total")] = r['ID'] # For each completed prediction set, determine the structure scores for prediction_set in completed_prediction_sets: #if prediction_set not in ['Ubiquitin scan: UQ_con_yeast p16']: # continue predictions = ddGdb.execute('SELECT ID, ddG, Scores, status, ScoreVersion FROM Prediction WHERE PredictionSet=%s ORDER BY ID', parameters=(prediction_set,)) num_predictions = len(predictions) # Pass #1: Iterate over all Predictions and make sure that they gave completed and contain all the scores we expect colortext.message('Prediction set: %s' % prediction_set) colortext.warning('Checking that all data exists...') for prediction in predictions: #assert(prediction['status'] == 'done') PredictionID = prediction['ID'] if PredictionID != 72856: continue global_scores = pickle.loads(prediction['ddG']) assert(global_scores) assert(prediction['ScoreVersion'] == 0.23) if not prediction['Scores']: raise Exception("This prediction needs to be scored with Noah's method.") gs2 = json.loads(prediction['Scores']) if True not in set([k.find('noah') != -1 for k in gs2['data'].keys()]): raise Exception("This prediction needs to be scored with Noah's method.") assert (gs2['data']['kellogg'] == global_scores['data']['kellogg']) # Pass #2: Iterate over all completed Predictions with null StructureScores. # For each Prediction, determine and store the structure scores count = 0 for prediction in predictions: count += 1 PredictionID = prediction['ID'] colortext.message('%s: %d of %d (Prediction #%d)' % (prediction_set, count, num_predictions, PredictionID)) #if PredictionID != 72856: #if PredictionID < 73045: continue if prediction['status'] == 'failed': colortext.error('Skipping failed prediction %d.' % PredictionID) continue if prediction['status'] == 'queued': colortext.warning('Skipping queued prediction %d.' % PredictionID) continue if prediction['status'] == 'postponed': colortext.printf('Skipping postponed prediction %d.' % PredictionID, 'cyan') continue # Store the ensemble scores try: global_scores = json.loads(prediction['Scores'])['data'] except: raise colortext.Exception("Failed reading the Scores field's JSON object. The Prediction Status is %(status)s. The Scores field is: '%(Scores)s'." % prediction) for score_type, inner_data in global_scores.iteritems(): for inner_score_type, data in inner_data.iteritems(): components = {} if score_type == 'kellogg' and inner_score_type == 'total': components = data['components'] ddG = data['ddG'] elif score_type == 'noah_8,0A' and inner_score_type == 'positional': ddG = data['ddG'] elif score_type == 'noah_8,0A' and inner_score_type == 'positional_twoscore': ddG = data['ddG'] elif score_type == 'noah_8,0A' and inner_score_type == 'total': ddG = data['ddG'] else: continue raise Exception('Unhandled score types: "%s", "%s".' % (score_type, inner_score_type)) ScoreMethodID = ScoreMethodMap[(score_type, inner_score_type)] new_record = dict( PredictionID = PredictionID, ScoreMethodID = ScoreMethodID, ScoreType = 'DDG', StructureID = -1, # This score is for the Prediction rather than a structure DDG = ddG, ) assert(not(set(components.keys()).intersection(set(new_record.keys())))) new_record.update(components) ddGdb.insertDictIfNew('PredictionStructureScore', new_record, ['PredictionID', 'ScoreMethodID', 'ScoreType', 'StructureID']) if skip_if_we_have_pairs != None: # Skip this case if we have a certain number of existing records (much quicker since we do not have to extract the binary) num_wt = ddGdb.execute_select("SELECT COUNT(ID) AS NumRecords FROM PredictionStructureScore WHERE PredictionID=%s AND ScoreType='WildType'", parameters=(PredictionID,))[0]['NumRecords'] num_mut = ddGdb.execute_select("SELECT COUNT(ID) AS NumRecords FROM PredictionStructureScore WHERE PredictionID=%s AND ScoreType='Mutant'", parameters=(PredictionID,))[0]['NumRecords'] print(num_wt, num_mut) if num_wt == num_mut and num_mut == skip_if_we_have_pairs: continue # Store the ddg_monomer scores for each structure grouped_scores = DDG_api.get_ddg_monomer_scores_per_structure(PredictionID) for structure_id, wt_scores in sorted(grouped_scores['WildType'].iteritems()): new_record = dict( PredictionID = PredictionID, ScoreMethodID = ScoreMethodMap[("kellogg", "total")], ScoreType = 'WildType', StructureID = structure_id, DDG = None, ) new_record.update(wt_scores) ddGdb.insertDictIfNew('PredictionStructureScore', new_record, ['PredictionID', 'ScoreMethodID', 'ScoreType', 'StructureID']) for structure_id, wt_scores in sorted(grouped_scores['Mutant'].iteritems()): new_record = dict( PredictionID = PredictionID, ScoreMethodID = ScoreMethodMap[("kellogg", "total")], ScoreType = 'Mutant', StructureID = structure_id, DDG = None, ) new_record.update(wt_scores) ddGdb.insertDictIfNew('PredictionStructureScore', new_record, ['PredictionID', 'ScoreMethodID', 'ScoreType', 'StructureID']) # Test to make sure that we can pick a best pair of structures (for generating a PyMOL session) assert(DDG_api.determine_best_pair(PredictionID) != None)
def extract_analysis_data(dataset_list_file, output_directory, data_extraction_method, expectn, top_x, prefix, test_mode = False): '''This is the main function in this script and is where the basic analysis is compiled. output_directory should contain the results of the prediction run. data_extraction_method should be a function pointer to the method-specific function used to retrieve the prediction results e.g. get_kic_run_details expectn specifies how many predictions we expect to find (useful in case some jobs failed). top_x specifies how many of the best-scoring predictions should be used to generate the TopX metric results e.g. the Top5 RMSD metric value measures the lowest RMSD amongst the five best-scoring structures. prefix is used to name the output files. ''' # Sanity check assert(top_x <= expectn) # Set up reference structures structures_folder = os.path.join('..', 'input', 'structures', '12_res') rcsb_references = os.path.join(structures_folder, 'rcsb', 'reference') rosetta_references = os.path.join(structures_folder, 'rosetta', 'reference') # Set up the per-case statistics dicts best_scoring_structures = {} median_scoring_structures = {} worst_scoring_structures = {} total_percent_subanstrom = {} top_x_percent_subanstrom = {} top_x_loop_prediction_sets = {} # Set up the input file used to generate the graph plotting the "percentage of subangstrom models" metric over # varying values of X used to select the TopX structures percentage_subangstrom_over_top_X_plot_input = ['PDB\tX\tPercentage of subangstrom cases for TopX'] percent_subangrom_by_top_x = {} # Set up the summary analysis file csv_file = ['\t'.join(['PDB ID', 'Models', '%<1.0A', 'Top{0} %<1.0A'.format(top_x), 'Best score', 'Top{0} score'.format(top_x), 'Median score', 'Worst score', 'Closest score', 'Top1 RMSD', 'Top{0} RMSD'.format(top_x), 'Closest RMSD'])] # Read in the benchmark input pdb_ids = [os.path.splitext(os.path.split(s.strip())[1])[0] for s in get_file_lines(dataset_list_file) if s.strip()] # Truncate the benchmark input for test mode if test_mode: pdb_ids = pdb_ids[:10] # Analyze the performance for each case in the benchmark for pdb_id in pdb_ids: rcsb_reference_pdb = os.path.join(rcsb_references, pdb_id + '.pdb') assert(os.path.exists(rcsb_reference_pdb)) rosetta_reference_pdb = os.path.join(rosetta_references, pdb_id + '.pdb') assert(os.path.exists(rosetta_reference_pdb)) assert(len(pdb_id) == 4) loops_file = os.path.join(structures_folder, 'rosetta', 'pruned', '{0}.loop.json'.format(pdb_id)) loop_sets = json.loads(read_file(loops_file)) assert(len(loop_sets['LoopSet']) == 1) # Create a container for loop predictions loop_prediction_set = LoopPredictionSet() # Read the coordinates from the reference PDB file rcsb_reference_matrix = PDB.extract_xyz_matrix_from_loop_json(PDB.from_filepath(rcsb_reference_pdb).structure_lines, loop_sets, atoms_of_interest = backbone_atoms, expected_num_residues = 12, expected_num_residue_atoms = 4) rosetta_reference_matrix = PDB.extract_xyz_matrix_from_loop_json(PDB.from_filepath(rosetta_reference_pdb).structure_lines, loop_sets, atoms_of_interest = backbone_atoms, expected_num_residues = 12, expected_num_residue_atoms = 4) colortext.wgreen('\n\nReading in the run details for {0}:'.format(pdb_id)) details = data_extraction_method(output_directory, pdb_id, loop_sets, test_mode = test_mode) for d in details: loop_prediction = loop_prediction_set.add(d['id'], d['score'], pdb_id = pdb_id, rmsd = None, pdb_path = d['predicted_structure'], pdb_loop_residue_matrix = d['pdb_loop_residue_matrix']) print(' Done') # Compute the RMSD for this case for the structure using the pandas dataframe # It is more efficient to do this after truncation if truncating by score but in the general case users will # probably want to consider all predictions. If not (e.g. for testing) then arbitrary subsets can be chosen # in the loop above colortext.wgreen('Computing RMSDs for {0}:'.format(pdb_id)) loop_prediction_set.compute_rmsds(rcsb_reference_matrix) loop_prediction_set.check_rmsds(rosetta_reference_matrix) print(' Done\n') # Truncate the structures to the top expectn-scoring files loop_prediction_set.sort_by_score() loop_prediction_set.truncate(expectn) if len(loop_prediction_set) != expectn: print('Error: Expected {0} structures but only found {1}.'.format(expectn, len(loop_prediction_set))) sys.exit(1) # Create a new set containing the top-X-scoring structures and identify the median-scoring structure top_x_loop_prediction_sets[pdb_id] = loop_prediction_set[:top_x] median_scoring_structures[pdb_id] = loop_prediction_set[int(expectn / 2)] # Determine the lowest-/best-scoring structure best_scoring_structures[pdb_id] = loop_prediction_set[0] best_score = best_scoring_structures[pdb_id].score worst_scoring_structures[pdb_id] = loop_prediction_set[-1] worst_score = worst_scoring_structures[pdb_id].score assert(top_x_loop_prediction_sets[pdb_id][0] == best_scoring_structures[pdb_id]) # Print structures colortext.warning('Top{0} structures'.format(top_x)) print(top_x_loop_prediction_sets[pdb_id]) colortext.warning('Top1 structure') print(best_scoring_structures[pdb_id]) colortext.warning('Median (by score) structure') print(median_scoring_structures[pdb_id]) colortext.warning('Lowest-scoring structures') print(worst_scoring_structures[pdb_id]) # Create values for TopX variable plot loop_prediction_set.sort_by_score() for top_x_var in range(1, len(loop_prediction_set) + 1): new_subset = loop_prediction_set[:top_x_var] percent_subangstrom = 100 * new_subset.fraction_with_rmsd_lt(1.0) percentage_subangstrom_over_top_X_plot_input.append('{0}\t{1}\t{2}'.format(pdb_id, top_x_var, percent_subangstrom)) percent_subangrom_by_top_x[top_x_var] = percent_subangrom_by_top_x.get(top_x_var, {}) percent_subangrom_by_top_x[top_x_var][pdb_id] = percent_subangstrom total_percent_subanstrom[pdb_id] = 100 * loop_prediction_set.fraction_with_rmsd_lt(1.0) top_x_percent_subanstrom[pdb_id] = 100 * top_x_loop_prediction_sets[pdb_id].fraction_with_rmsd_lt(1.0) colortext.warning('Number of sub-angstrom cases in the full set of {0}: {1}'.format(expectn, total_percent_subanstrom[pdb_id])) colortext.warning('Number of sub-angstrom cases in the TopX structures: {1}'.format(expectn, top_x_percent_subanstrom[pdb_id])) loop_prediction_set.sort_by_rmsd() closest_rmsd = loop_prediction_set[0].rmsd closest_score = loop_prediction_set[0].score colortext.warning('RMSD of closest model: {0}'.format(closest_rmsd)) colortext.warning('Score of closest model: {0}'.format(closest_score)) top_1_rmsd = best_scoring_structures[pdb_id].rmsd top_x_rmsd = best_scoring_structures[pdb_id].rmsd top_x_score = best_scoring_structures[pdb_id].score for s in top_x_loop_prediction_sets[pdb_id]: if (s.rmsd < top_x_rmsd) or (s.rmsd == top_x_rmsd and s.score < top_x_score): top_x_rmsd = s.rmsd top_x_score = s.score assert(top_x_score <= worst_score) assert(top_x_rmsd <= top_1_rmsd) print('Top 1 RMSD (predicted vs Rosetta/RCSB reference structure): {0}'.format(top_1_rmsd)) print('Top {0} RMSD (predicted vs Rosetta/RCSB reference structure): {1}'.format(top_x, top_x_rmsd)) csv_file.append('\t'.join(map(str, [pdb_id, expectn, total_percent_subanstrom[pdb_id], top_x_percent_subanstrom[pdb_id], best_score, top_x_score, median_scoring_structures[pdb_id].score, worst_score, closest_score, top_1_rmsd, top_x_rmsd, closest_rmsd]))) # Add a column of median percent subangstrom values for top_x_var, values_by_pdb in sorted(percent_subangrom_by_top_x.iteritems()): assert(sorted(values_by_pdb.keys()) == sorted(pdb_ids)) median_value = sorted(values_by_pdb.values())[len(pdb_ids) / 2] percentage_subangstrom_over_top_X_plot_input.append('Median\t{1}\t{2}'.format(pdb_id, top_x_var, median_value)) write_file('{0}analysis.csv'.format(prefix), '\n'.join(csv_file)) write_file('{0}analysis.tsv'.format(prefix), '\n'.join(csv_file)) write_file('{0}percentage_subangstrom_over_top_X.tsv'.format(prefix), '\n'.join(percentage_subangstrom_over_top_X_plot_input))
def CreateAnalysisTables(self): ddGdb = self.ddGdb PredictionSet = self.PredictionSet predictions = PredictionScores(ddGdb, PredictionSet, self.ddG_score_type, score_cap=self.score_cap) predicted_scores = predictions.Predictions s = "Analyzing %d predictions in PredictionSet '%s' for UserDataSet '%s'. " % ( predictions.NumberOfPredictions, predictions.PredictionSet.replace( "_", "\_"), predictions.UserDataSetName) if self.score_cap: s += "Running analysis over the following analysis sets: '%s' with predicted scores capped at +-%0.2f." % ( join(predictions.AnalysisSets, "', '"), self.score_cap) else: s += "Running analysis over the following analysis sets: '%s'." % ( join(predictions.AnalysisSets, "', '")) self.description.append(("black", s)) if self.quiet_level >= 1: colortext.message( "Analyzing %d predictions in PredictionSet '%s' for UserDataSet '%s'." % (predictions.NumberOfPredictions, predictions.PredictionSet, predictions.UserDataSetName)) colortext.message( "Running analysis over the following analysis sets: '%s'." % (join(predictions.AnalysisSets, "', '"))) analysis_tables = {} # Analyze data for for AnalysisSet in predictions.AnalysisSets: analysis_table = AnalysisTable() experiments = UserDataSetExperimentalScores( ddGdb, predictions.UserDataSetID, AnalysisSet) count = 0 numMissing = 0 for section, sectiondata in sorted(experiments.iteritems()): for recordnumber, record_data in sorted( sectiondata.iteritems()): count += 1 PDB_ID = record_data["PDB_ID"] ExperimentID = record_data["ExperimentID"] ExperimentalDDG = record_data["ExperimentalDDG"] if predicted_scores.get(ExperimentID) and predicted_scores[ ExperimentID].get(PDB_ID): PredictedDDG = predicted_scores[ExperimentID][PDB_ID][ "PredictedDDG"] analysis_table.add( AnalysisPoint(ExperimentalDDG, PredictedDDG, ExperimentID=ExperimentID, PDB_ID=PDB_ID, section=section, recordnumber=recordnumber)) else: numMissing += 1 if numMissing > 0 and self.quiet_level >= 1: self.description.append(( "Bittersweet", "Missing %d predictions out of %d records for analysis set %s." % (numMissing, count, AnalysisSet))) colortext.warning( "Missing %d predictions out of %d records for analysis set %s." % (numMissing, count, AnalysisSet)) analysis_tables[AnalysisSet] = analysis_table self.analysis_tables = analysis_tables
c = 0 for pdb_id in pdb_ids: try: c += 1 colortext.message('\n{0}/{1}: {2}'.format(c, len(pdb_ids), pdb_id)) hits = b.by_pdb(pdb_id) if hits: colortext.warning('{0} hits: {1}'.format(len(hits), ','.join(hits))) else: colortext.warning('No hits') except Exception, e: colortext.error('FAILED') failed_cases.append((pdb_id, str(e), traceback.format_exc())) if failed_cases: colortext.warning('*** These cases failed ***') for p in failed_cases: print('') colortext.pcyan(p[0]) colortext.error(p[1]) print(p[2]) print('') def test_sequences(b, sequences): failed_cases = [] c = 0 for sequence in sequences: try: c += 1 colortext.message('\n{0}/{1}: {2}'.format(c, len(sequences), sequence))
pdb_chain_to_pfam_mapping[pdb_id][chain_id].add(pfam_acc) pfam_to_pdb_chain_mapping[pfam_acc] = pfam_to_pdb_chain_mapping.get(pfam_acc, set()) pfam_to_pdb_chain_mapping[pfam_acc].add(pdb_key) self.pdb_chain_to_pfam_mapping = pdb_chain_to_pfam_mapping self.pfam_to_pdb_chain_mapping = pfam_to_pdb_chain_mapping def get_pfam_accession_numbers_from_pdb_id(self, pdb_id): '''Note: an alternative is to use the RCSB API e.g. http://www.rcsb.org/pdb/rest/hmmer?structureId=1cdg.''' pdb_id = pdb_id.lower() if self.pdb_chain_to_pfam_mapping.get(pdb_id): return self.pdb_chain_to_pfam_mapping[pdb_id].copy() def get_pfam_accession_numbers_from_pdb_chain(self, pdb_id, chain): '''Note: an alternative is to use the RCSB API e.g. http://www.rcsb.org/pdb/rest/hmmer?structureId=1cdg.''' return self.pdb_chain_to_pfam_mapping.get(pdb_id.lower(), {}).get(chain) def get_pdb_chains_from_pfam_accession_number(self, pfam_acc): return self.pfam_to_pdb_chain_mapping.get(pfam_acc) if __name__ == '__main__': pfam_api = Pfam() colortext.warning(pfam_api.get_pfam_accession_numbers_from_pdb_chain('1TVA', 'A')) colortext.warning(pfam_api.get_pfam_accession_numbers_from_pdb_chain('1CDG', 'A')) colortext.warning(pfam_api.get_pfam_accession_numbers_from_pdb_id('1A2c')) colortext.message(pfam_api.get_pdb_chains_from_pfam_accession_number('PF14716'))
# requires this at the time of writing) write_file( os.path.join(output_directory, '{0}.loop'.format(pdb_prefix)), loop_file_content) sys.stdout.write('.') sys.stdout.flush() print('') if __name__ == '__main__': from libraries import docopt arguments = docopt.docopt(__doc__) output_directory = arguments['<output_directory>'] e, trc = '', '' if True: # Disable this code by default try: os.mkdir(output_directory) except Exception, e: trc = traceback.format_exc() if not os.path.exists(output_directory): colortext.error('Error: Could not create the output directory.') if e: colortext.error(str(e)) colortext.warning(trc) #create_pruned_structures(output_directory) add_missing_residues(output_directory)
def add_kortemme_degrado_joint_meeting(self, calendar_id, start_dt, end_dt, location, presenters, summary = None, description = None, visibility = 'default', username_map = {}, email_map = {}): e = BasicEvent(self, start_dt, end_dt, location = location, summary = summary, description = description, visibility = visibility, username_map = username_map, email_map = email_map) event = e.create_lab_meeting('Kortemme/DeGrado joint meeting', presenters, locked = True) colortext.warning(pprint.pformat(event))
def main(FixedIDs = [], radii = [6.0, 7.0, 8.0, 9.0]): max_processors = get_number_of_processors() rescore_process_file = "/tmp/klab_rescore.txt" parser = OptionParser() parser.add_option("-n", "--numprocesses", default=1, type='int', dest="num_processes", help="The number of processes used for the rescoring. The cases are split according to this number.", metavar="NUM_PROCESSES") parser.add_option("-p", "--process", default=1, type='int', dest="process", help="The ID of this process. This should be an integer between 1 and the number of processes used for the rescoring.", metavar="PROCESS_ID") parser.add_option("-d", "--delete", action="store_true", dest="delete", help="Delete the process tracking file %s." % rescore_process_file) parser.add_option("-s", "--set", type='string', dest="prediction_set", help="The prediction set to rescore.") (options, args) = parser.parse_args() if options.delete and os.path.exists(rescore_process_file): print("Removing %s." % rescore_process_file) os.remove(rescore_process_file) num_processes = options.num_processes prediction_set = options.prediction_set process_id = options.process for i in FixedIDs: assert(type(i) == type(1)) # SELECT * FROM `Prediction` WHERE `PredictionSet`= 'RosCon2013_P16_score12prime' AND Status='done' LIMIT 1 # Check prediction set if not prediction_set: raise colortext.Exception("A prediction set must be specified.") else: if FixedIDs: results = ddGdb.execute("SELECT DISTINCT PredictionSet FROM Prediction WHERE ID IN (%s)" % ",".join(map(str, FixedIDs))) if len(results) != 1: raise colortext.Exception("Error: The fixed IDs cover %d different prediction sets." % len(results)) else: results = ddGdb.execute("SELECT ID FROM PredictionSet WHERE ID=%s", parameters=(prediction_set,)) if not results: raise colortext.Exception("The prediction set '%s' does not exist in the database." % prediction_set) if num_processes < 1: raise colortext.Exception("At least 1 processor must be used.") if num_processes > max_processors: raise colortext.Exception("Only %d processors/cores were detected. Cannot run with %d processes." % (max_processors, num_processes)) if num_processes > (max_processors * 0.75): colortext.warning("Warning: Using %d processors/cores out of %d which is %0.2f%% of the total available." % (num_processes, max_processors, (100.0*float(num_processes)/float(max_processors)))) if not(1 <= process_id <= min(max_processors, num_processes)): raise colortext.Exception("The process ID %d must be between 1 and the number of processes, %d." % (process_id, num_processes)) if os.path.exists(rescore_process_file): lines = readFileLines(rescore_process_file) idx = lines[0].find("numprocesses") if idx == -1: raise Exception("Badly formatted %s." % rescore_process_file) existing_num_processes = int(lines[0][idx+len("numprocesses"):]) if existing_num_processes != num_processes: raise colortext.Exception("You specified the number of processes to be %d but %s already specifies it as %d." % (num_processes, rescore_process_file, existing_num_processes)) for line in [line for line in lines[1:] if line.strip()]: idx = line.find("process") if idx == -1: raise colortext.Exception("Badly formatted %s. Line is '%s'." % (rescore_process_file, line)) existing_process = int(line[idx+len('process'):]) if process_id == existing_process: raise colortext.Exception("Process %d is already logged as running. Check if this is so and edit %s." % (process_id, rescore_process_file)) F = open(rescore_process_file, 'a') F.write("process %d\n" % process_id) F.close() else: F = open(rescore_process_file, 'w') F.write("numprocesses %d\n" % num_processes) F.write("process %d\n" % process_id) F.close() output_dir = os.path.join('rescoring', str(process_id)) if not(os.path.exists(output_dir)): os.makedirs(output_dir) abs_output_dir = os.path.abspath(os.path.join(os.getcwd(), output_dir)) print("Running process in %s.\n" % abs_output_dir) ReallyFixedIDs = False results = ddGdb.execute("SELECT ID, ExperimentID, Scores FROM Prediction WHERE PredictionSet=%s AND Status='done' AND ScoreVersion <> %s", parameters=(prediction_set, float(current_score_revision),)) if not(FixedIDs) and results: raise WrongScoreRevisionException("Score versions found which are not %s. Need to update table structure." % current_score_revision) else: # Hacky way to run multiple processes if ReallyFixedIDs: num_to_score = len(remaining_unscored) num_for_this_to_score = num_to_score / num_processes IDs_to_score = remaining_unscored[(process_id-1) * num_for_this_to_score : (process_id) * num_for_this_to_score] results = ddGdb.execute("SELECT ID, ExperimentID, Scores, UserDataSetExperimentID FROM Prediction WHERE ID IN (%s)" % (",".join(map(str, IDs_to_score)))) elif FixedIDs: results = ddGdb.execute("SELECT ID, ExperimentID, Scores, UserDataSetExperimentID FROM Prediction WHERE ID IN (%s) AND MOD(ID,%s)=%s" % (",".join(map(str, FixedIDs)), num_processes,process_id-1)) else: results = ddGdb.execute("SELECT ID, ExperimentID, Scores, UserDataSetExperimentID FROM Prediction WHERE PredictionSet=%s AND Status='done' AND ScoreVersion=%s AND MOD(ID,%s)=%s", parameters=(prediction_set, float(current_score_revision),num_processes,process_id-1)) count = 0 cases_computed = 0 total_time_in_secs = 0 number_of_cases_left = len(results) * len(radii) failed_cases = [] colortext.printf("Rescoring %d predictions over %d radii...\n" % (len(results), len(radii)), 'lightgreen') for r in results: t = Timer() t.add('Preamble') inner_count = 0 mutations = ddGdb.execute('SELECT * FROM ExperimentMutation WHERE ExperimentID=%s', parameters=(r['ExperimentID'],)) mutation_str = ', '.join(['%s %s%s%s' % (m['Chain'], m['WildTypeAA'], m['ResidueID'], m['MutantAA']) for m in mutations]) extracted_data = False details = ddGdb.execute_select('SELECT Prediction.ID, PDBFileID, Chain FROM Prediction INNER JOIN Experiment ON Prediction.ExperimentID=Experiment.ID INNER JOIN ExperimentChain ON Prediction.ExperimentID=ExperimentChain.ExperimentID WHERE Prediction.ID=%s', parameters=(r['ID'],)) details = ddGdb.execute_select('SELECT Prediction.ID, PDBFileID, Chain FROM Prediction INNER JOIN Experiment ON Prediction.ExperimentID=Experiment.ID INNER JOIN ExperimentChain ON Prediction.ExperimentID=ExperimentChain.ExperimentID WHERE Prediction.ID=%s', parameters=(r['ID'],)) colortext.message("Prediction: %d, %s chain %s. Mutations: %s. Experiment ID #%d. UserDataSetExperimentID #%d." % (details[0]['ID'], details[0]['PDBFileID'], details[0]['Chain'], mutation_str, r['ExperimentID'], r['UserDataSetExperimentID'])) experiment_pdbID = ddGdb.execute('SELECT PDBFileID FROM Experiment WHERE ID=%s', parameters=(r['ExperimentID'],))[0]['PDBFileID'] print('Experiment PDB file ID = %s' % experiment_pdbID) pdbID = ddGdb.execute('SELECT UserDataSetExperiment.PDBFileID FROM Prediction INNER JOIN UserDataSetExperiment ON UserDataSetExperimentID=UserDataSetExperiment.ID WHERE Prediction.ID=%s', parameters=(r['ID'],))[0]['PDBFileID'] print('UserDataSetExperiment PDB file ID = %s' % pdbID) count += 1 if True:#len(mutations) == 1: timestart = time.time() #mutation = mutations[0] dbchains = sorted(set([mutation['Chain'] for mutation in mutations])) # todo: note: assuming monomeric structures here assert(len(dbchains) == 1) dbchain = dbchains[0] #mutantaa = mutation['MutantAA'] ddG_dict = json.loads(r['Scores']) kellogg_ddG = ddG_dict['data']['kellogg']['total']['ddG'] #assert(ddG_dict['version'] == current_score_revision) all_done = True for radius in radii: score_name = ('noah_%0.1fA' % radius).replace(".", ",") if not(ddG_dict['data'].get(score_name)): all_done = False else: cases_computed += 1 number_of_cases_left -= 1 if all_done: print('Prediction %d: done.' % r["ID"]) continue # Extract data t.add('Grab data') #archivefile = None #prediction_data_path = ddGdb.execute('SELECT Value FROM _DBCONSTANTS WHERE VariableName="PredictionDataPath"')[0]['Value'] #job_data_path = os.path.join(prediction_data_path, '%d.zip' % r['ID']) #print(job_data_path) #assert(os.path.exists(job_data_path)) #archivefile = readBinaryFile(job_data_path) archivefile = DDG_interface.getData(r['ID']) zipfilename = os.path.join(output_dir, "%d.zip" % r['ID']) F = open(zipfilename, "wb") F.write(archivefile) F.close() t.add('Extract data') zipped_content = zipfile.ZipFile(zipfilename, 'r', zipfile.ZIP_DEFLATED) tmpdir = None repacked_files = [] mutant_files = [] rosetta_resids = [] try: tmpdir = makeTemp755Directory(output_dir) highestIndex = -1 foundResfile = False foundMutfile = False presumed_mutation = None for fname in sorted(zipped_content.namelist()): if fname.endswith(".pdb"): if fname.startswith("%s/mut_" % r['ID']) or fname.startswith("%s/repacked_" % r['ID']): structnum = int(fname[fname.rindex('_')+1:-4]) if fname.startswith("%s/mut_" % r['ID']): if presumed_mutation: assert(presumed_mutation == os.path.split(fname)[1].split('_')[1]) else: presumed_mutation = os.path.split(fname)[1].split('_')[1] newfname = 'mutant_%02d' % structnum if fname.startswith("%s/repacked_" % r['ID']): newfname = 'repacked_%02d' % structnum highestIndex = max(highestIndex, structnum) newfilepath = os.path.join(tmpdir, newfname) writeFile(newfilepath, zipped_content.read(fname)) if fname.startswith("%s/mut_" % r['ID']): mutant_files.append(newfilepath) if fname.startswith("%s/repacked_" % r['ID']): repacked_files.append(newfilepath) #elif fname.startswith("%s/%s-%s" % (r['ID'],r['ExperimentID'],pdbID)) or fname.startswith("%s/repacked_" % r['ID']): # writeFile(os.path.join(tmpdir, '%s.pdb' % pdbID), zipped_content.read(fname)) if fname.startswith("%s/%s-%s.resfile" % (r['ID'],r['ExperimentID'],experiment_pdbID)): raise Exception('This case needs to be updated (see the mutfile section below). We mainly use mutfiles now so I did not update this section.') foundResfile = True lines = zipped_content.read(fname).split("\n") assert(len(lines) == 3) assert(lines[0] == "NATAA") assert(lines[1] == "start") resfile_mutation = lines[2].split(" ") assert(len(resfile_mutation) == 4) rosetta_resid = resfile_mutation[0] rosetta_chain = resfile_mutation[1] rosetta_mutaa = resfile_mutation[3] assert(mutantaa == rosetta_mutaa) assert(dbchain == rosetta_chain) assert(resfile_mutation[2] == 'PIKAA') assert(len(rosetta_mutaa) == 1) if fname.startswith("%s/%s-%s.mutfile" % (r['ID'],r['ExperimentID'],experiment_pdbID)): foundMutfile = True lines = zipped_content.read(fname).split("\n") assert(lines[0].startswith('total ')) num_mutations = int(lines[0][6:]) assert(lines[1] == str(num_mutations)) # todo: note: assuming monomeric structures here rosetta_chain = ddGdb.execute("SELECT Chain FROM ExperimentChain WHERE ExperimentID=%s", parameters=(r['ExperimentID'],)) assert(len(rosetta_chain) == 1) rosetta_chain = rosetta_chain[0]['Chain'] resfile_mutations = lines[2:] for resfile_mutation in resfile_mutations: resfile_mutation = resfile_mutation.split(" ") assert(len(resfile_mutation) == 3) rosetta_resids.append(resfile_mutation[1]) rosetta_mutaa = resfile_mutation[2] assert(dbchain == rosetta_chain) assert(len(rosetta_mutaa) == 1) # Make sure the wtaa->mutantaa types match the structures assert(not(foundResfile)) if not foundMutfile: raise Exception('This case needs to be updated (see the mutfile section below). This was added as a hack for cases where I did not store the mutfile so I did not update this section.') input_files = ddGdb.execute_select('SELECT InputFiles FROM Prediction WHERE ID=%s', parameters=(r['ID'],)) assert(len(input_files) == 1) lines = pickle.loads(input_files[0]['InputFiles'])['MUTFILE'].split("\n") #lines = regenerate_mutfile(r['ID']).split("\n") assert(len(lines) == 3) assert(lines[0] == "total 1") assert(lines[1] == "1") resfile_mutation = lines[2].split(" ") assert(len(resfile_mutation) == 3) rosetta_resid = resfile_mutation[1] rosetta_chain = ddGdb.execute("SELECT Chain FROM ExperimentChain WHERE ExperimentID=%s", parameters=(r['ExperimentID'],)) assert(len(rosetta_chain) == 1) rosetta_chain = rosetta_chain[0]['Chain'] rosetta_mutaa = resfile_mutation[2] assert(dbchain == rosetta_chain) assert(len(rosetta_mutaa) == 1) assert("%s%s%s" % (resfile_mutation[0], resfile_mutation[1], resfile_mutation[2]) == presumed_mutation) fullresids = [] for rosetta_resid in rosetta_resids: fullresid = None if rosetta_resid.isdigit(): fullresid = '%s%s%s ' % (rosetta_chain, (4-len(rosetta_resid)) * ' ', rosetta_resid) else: assert(False) fullresid = '%s%s%s' % (rosetta_chain, (5-len(rosetta_resid)) * ' ', rosetta_resid) fullresids.append(fullresid) resultst1 = ddGdb.execute_select("SELECT ExperimentID, UserDataSetExperimentID FROM Prediction WHERE ID=%s", parameters = (r['ID'],)) assert(len(resultst1) == 1) ExperimentIDt1 = resultst1[0]['ExperimentID'] UserDataSetExperimentIDt1 = resultst1[0]['UserDataSetExperimentID'] if UserDataSetExperimentIDt1: resultst2 = ddGdb.execute_select("SELECT PDBFileID FROM UserDataSetExperiment WHERE ID=%s", parameters = (UserDataSetExperimentIDt1,)) else: resultst2 = ddGdb.execute_select("SELECT PDBFileID FROM Experiment WHERE ID=%s", parameters = (ExperimentIDt1,)) assert(len(resultst2) == 1) prediction_PDB_ID = resultst2[0]['PDBFileID'] if False and prediction_PDB_ID not in ['1TEN', '1AYE', '1H7M'] + ['1A2P', '1BNI', '1STN']: for fullresid in fullresids: wtaa = None for m in mutations: # Hack for ub_RPN13 if prediction_PDB_ID == 'ub_RPN13' and m['Chain'] == fullresid[0] and m['ResidueID'] == str(int(fullresid[1:].strip()) - 109): wtaa = m['WildTypeAA'] # Hack for ub_RPN13_yeast elif prediction_PDB_ID == 'uby_RPN13' and m['Chain'] == fullresid[0] and m['ResidueID'] == str(int(fullresid[1:].strip()) - 109): wtaa = m['WildTypeAA'] # Hack for ub_OTU elif prediction_PDB_ID == 'ub_OTU' and m['Chain'] == fullresid[0] and m['ResidueID'] == str(int(fullresid[1:].strip()) - 172): wtaa = m['WildTypeAA'] # Hack for ub_OTU_yeast elif prediction_PDB_ID == 'uby_OTU' and m['Chain'] == fullresid[0] and m['ResidueID'] == str(int(fullresid[1:].strip()) - 172): wtaa = m['WildTypeAA'] # Hack for ub_UQcon elif prediction_PDB_ID == 'ub_UQcon' and m['Chain'] == fullresid[0] and m['ResidueID'] == str(int(fullresid[1:].strip()) + 213): # starts at 501 wtaa = m['WildTypeAA'] # Hack for uby_UQcon elif prediction_PDB_ID == 'uby_UQcon' and m['Chain'] == fullresid[0] and m['ResidueID'] == str(int(fullresid[1:].strip()) - 287): wtaa = m['WildTypeAA'] elif m['Chain'] == fullresid[0] and m['ResidueID'] == fullresid[1:].strip(): wtaa = m['WildTypeAA'] if (wtaa == None): colortext.error(prediction_PDB_ID) colortext.error('wtaa == None') colortext.error('fullresid = %s' % str(fullresid)) colortext.error(str(mutations)) colortext.warning([rosetta_resid.strip() for rosetta_resid in rosetta_resids]) #sys.exit(0) assert(wtaa != None) assert(PDB.from_filepath(repacked_files[0]).get_residue_id_to_type_map()[fullresid] == wtaa) #assert(PDB(mutant_files[0]).get_residue_id_to_type_map()[fullresid] == mutantaa) for radius in radii: score_name = ('noah_%0.1fA' % radius).replace(".", ",") if ddG_dict['data'].get(score_name): print('Radius %0.1f: done.' % radius) continue cases_computed += 1 number_of_cases_left -= 1 t.add('Radius %0.3f: repacked' % radius) colortext.printf("Prediction ID: %d. Calculating radius %0.1f. Calculation #%d of %d." % (r['ID'], radius, cases_computed, len(results) * len(radii)), 'orange') repacked_score = NoahScore() repacked_score.calculate(repacked_files, rosetta_chain, sorted([rosetta_resid.strip() for rosetta_resid in rosetta_resids]), radius = radius) colortext.message("Repacked") print(repacked_score) t.add('Radius %0.3f: mutant' % radius) mutant_score = NoahScore() mutant_score.calculate(mutant_files, rosetta_chain, sorted([rosetta_resid.strip() for rosetta_resid in rosetta_resids]), radius = radius) colortext.printf("Mutant", color = 'cyan') print(mutant_score) t.add('Radius %0.3f: postamble' % radius) colortext.printf("ddG", color = 'lightpurple') ddg_score = repacked_score.ddg(mutant_score) print(ddg_score) colortext.printf("Liz's ddG", color = 'yellow') print("Total score: %0.3f" % kellogg_ddG) ddG_dict['version'] = '0.23' if ddG_dict['version'] == '0.1': ddG_dict['version'] = '0.21' ddG_dict['data'] = { 'kellogg' : { 'total' : ddG_dict['data'], }, 'noah': { 'total' : {'ddG' : ddg_score.total}, 'positional' : {'ddG' : ddg_score.positional}, 'positional_twoscore' : {'ddG' : ddg_score.positional_twoscore}, }, } elif ddG_dict['version'] == '0.2': ddG_dict['version'] = '0.21' ddG_dict['data']['noah']['total']['ddG'] = ddg_score.total ddG_dict['data']['noah']['positional']['ddG'] = ddg_score.positional ddG_dict['data']['noah']['positional_twoscore']['ddG'] = ddg_score.positional_twoscore elif ddG_dict['version'] == '0.22': ddG_dict['data'][score_name] = {'total' : {}, 'positional' : {}, 'positional_twoscore' : {}} ddG_dict['data'][score_name]['total']['ddG'] = ddg_score.total ddG_dict['data'][score_name]['positional']['ddG'] = ddg_score.positional ddG_dict['data'][score_name]['positional_twoscore']['ddG'] = ddg_score.positional_twoscore elif ddG_dict['version'] == '0.23': ddG_dict['data'][score_name] = {'total' : {}, 'positional' : {}, 'positional_twoscore' : {}} ddG_dict['data'][score_name]['total']['ddG'] = ddg_score.total ddG_dict['data'][score_name]['positional']['ddG'] = ddg_score.positional ddG_dict['data'][score_name]['positional_twoscore']['ddG'] = ddg_score.positional_twoscore jsonified_ddG = json.dumps(ddG_dict) ddGdb.execute('UPDATE Prediction SET Scores=%s WHERE ID=%s', parameters=(jsonified_ddG, r['ID'],)) t.add('Cleanup') shutil.rmtree(tmpdir) os.remove(zipfilename) except Exception, e: print("Exception! In prediction %d" % r['ID'], str(e)) failed_cases.append(r['ID']) import traceback print(traceback.format_exc()) if tmpdir: shutil.rmtree(tmpdir) total_time_in_secs += t.sum() average_time_taken = float(total_time_in_secs)/float(cases_computed or 1) estimate_remaining_time = number_of_cases_left * average_time_taken t.stop() colortext.printf("**Profile**", 'orange') print(t) colortext.message("Time taken for this case: %0.2fs." % t.sum()) colortext.message("Average time taken per case: %0.2fs." % average_time_taken) colortext.message("Estimated time remaining: %dh%dm%ds." % (int(estimate_remaining_time/3600), int((estimate_remaining_time/60) % 60), estimate_remaining_time % 60)) print("\n")
def generate_JSON_dataset(dataset_ID, pdb_data, pub_data): record_data = {} #1LRP #1LMB # 1 JSON object per dataset record failure_count = 0 records = ddGdb.execute_select('SELECT * FROM DataSetDDG WHERE DataSetID=%s', parameters=(dataset_ID,)) colortext.warning('Starting with %d records.' % (len(records))) mutation_count = {1:0, 2:0, 3:0, 4:0, 5:0} for r in records: mutation_is_reversed = r['MutationIsReversed'] == 1 d = dict( _DataSetDDGID = r['ID'], RecordID = r['RecordNumber'], AggregateType = r['AggregateType'], DDG = r['PublishedValue'], PDBFileID = r['PDBFileID'], DerivedMutation = mutation_is_reversed, ) # Parse PDB if not(cached_pdbs.get(r['PDBFileID'])): cached_pdbs[r['PDBFileID']] = PDB(ddGdb.execute_select('SELECT Content FROM PDBFile WHERE ID=%s', parameters=(r['PDBFileID'],))[0]['Content']) # Store PDB data PDBResolution = None, PDBMethodOfDetermination = None, try: PDBResolution = cached_pdbs[r['PDBFileID']].get_resolution() except: pass try: PDBMethodOfDetermination = cached_pdbs[r['PDBFileID']].get_techniques() except: pass pdb_data[r['PDBFileID']] = dict( Resolution = PDBResolution, MethodOfDetermination = PDBMethodOfDetermination, ) assay_DDGs = ddGdb.execute_select(''' SELECT * FROM DataSetDDGSource INNER JOIN ExperimentAssayDDG ON DataSetDDGSource.ExperimentAssayID = ExperimentAssayDDG.ExperimentAssayID AND DataSetDDGSource.Type = ExperimentAssayDDG.Type INNER JOIN ExperimentAssay ON ExperimentAssayDDG.ExperimentAssayID = ExperimentAssay.ID WHERE DataSetDDGID=%s''', parameters=(r['ID'],)) ExperimentID = set([a['ExperimentID'] for a in assay_DDGs]) if len(ExperimentID) != 1: colortext.message('%d records passed' % len(record_data)) # Cases where 1FLV and 1FTG need to be elided if sorted(ExperimentID) in ([113699, 113830], [113704, 113832], [113705, 113836]): ExperimentID = [sorted(ExperimentID)[0]] elif sorted(ExperimentID) in ([112149, 112591],): # ExperimentID is used below for mutation details but these agree in this case. 1LZ1, 2BQA ExperimentID = [sorted(ExperimentID)[0]] elif sorted(ExperimentID) in ( [112141, 112583L], [112136, 112578], [112137, 112579], [112142, 112584], [112139, 112581], [112140, 112582], [112146, 112588], [112147, 112589], [112148, 112590] ): # ExperimentID is used below for mutation details but these agree in this case. 1REX, 2BQA ExperimentID = [sorted(ExperimentID)[0]] elif sorted(ExperimentID) in ([112227, 112323], [112288, 113039], [111587, 112379]): # ExperimentID is used below for mutation details but these agree in this case. 2LZM, 1L63 ExperimentID = [sorted(ExperimentID)[0]] else: colortext.warning( '\n'.join(['%(PDBFileID)s %(Chain)s %(WildTypeAA)s %(ResidueID)s %(MutantAA)s' % rii for rii in ddGdb.execute_select(''' SELECT * FROM `ExperimentMutation` INNER JOIN Experiment ON Experiment.ID=ExperimentID WHERE `ExperimentID` IN (%s)''' % ','.join(map(str, ExperimentID)))])) pprint.pprint(r) colortext.error(map(int, ExperimentID)) #pprint.pprint(assay_DDGs) print(sorted(ExperimentID)) assert(len(ExperimentID) == 1) ExperimentID = ExperimentID.pop() d['_ExperimentID'] = ExperimentID experimental_DDGs = [] for a in assay_DDGs: experimental_DDGs.append(dict( DDG = a['Value'], DDGType = a['Type'], Publication = a['Publication'], LocationOfValueInPublication = a['LocationOfValueInPublication'], Temperature = a['Temperature'], pH= a['pH'], )) # Store Publication data pub_data[a['Publication']] = cached_publications[a['Publication']] d['ExperimentalDDGs'] = experimental_DDGs # Retrieve mutations mutation_records = ddGdb.execute_select('SELECT * FROM ExperimentMutation WHERE ExperimentID=%s ORDER BY ResidueID', parameters=(ExperimentID,)) if dataset_ID == "AlaScan-GPK_2014/09/25": assert(len(mutation_records) == 1) mutations = [] failed_check = False mutation_count[len(mutation_records)] += 1 for mutation in mutation_records: mutation_d = {} #if ExperimentID == 109911: # d['PDBFileID'] = '1WQ5' # Hack for one 1BKS case mutation_d['Chain'] = mutation['Chain'] mutation_d['ResidueID'] = mutation['ResidueID'] if mutation_is_reversed: mutation_d['MutantAA'] = mutation['WildTypeAA'] mutation_d['WildTypeAA'] = mutation['MutantAA'] else: mutation_d['WildTypeAA'] = mutation['WildTypeAA'] mutation_d['MutantAA'] = mutation['MutantAA'] if dataset_ID == "AlaScan-GPK_2014/09/25": if d['PDBFileID'] == '1LMB': mutation_d['Chain'] = '3' # Hack for the PDB replacement 1LRP (3.2A) -> 1LMB (1.8A) if d['PDBFileID'] == '1U5P' and int(mutation_d['ResidueID']) < 1600: mutation_d['ResidueID'] = str(int(mutation_d['ResidueID']) + 1762) # Hack for the PDB replacement 1AJ3, NMR -> 1U5P (2A) if dataset_ID == "Kellogg_10.1002/prot.22921_2010/12/03": if d['PDBFileID'] == '1U5P' and int(mutation_d['ResidueID']) < 1600: mutation_d['ResidueID'] = str(int(mutation_d['ResidueID']) + 1762) # Hack for the PDB replacement 1AJ3, NMR -> 1U5P (2A) mutated_residue = ddGdb.execute_select('SELECT * FROM PDBResidue WHERE PDBFileID=%s AND Chain=%s AND ResidueID=%s', parameters=(d['PDBFileID'], mutation_d['Chain'], ResidueID2String(mutation_d['ResidueID']))) if len(mutated_residue) == 0: colortext.warning('Skipping Experiment #%d (%s) in %s due to missing residue %s.' % (ExperimentID, d['PDBFileID'], dataset_ID, mutation_d['ResidueID'])) #print('SELECT * FROM PDBResidue WHERE PDBFileID=%s AND Chain=%s AND ResidueID=%s' % (d['PDBFileID'], mutation_d['Chain'], ResidueID2String(mutation_d['ResidueID']))) #pprint.pprint(d) #pprint.pprint(mutations) #pprint.pprint(mutation_d) #print(ExperimentID) #print(mutated_residue) #print(10*'*') #print('\n') failure_count += 1 failed_check = True break assert(len(mutated_residue) == 1) mutated_residue = mutated_residue[0] mutation_d['DSSPExposure'] = mutated_residue['MonomericExposure'] mutation_d['DSSPType'] = mutated_residue['MonomericDSSP'] mutation_d['DSSPSimpleSSType'] = dssp_elision.get(mutation_d['DSSPType']) assert(mutation_d['DSSPType'] != None) assert(mutation_d['DSSPSimpleSSType'] != None) mutations.append(mutation_d) if failed_check: print('FAILED CHECK') continue d['Mutations'] = mutations if dataset_ID == "Potapov_10.1093/protein/gzp030_2009/09/01": key = '%s_%s_%s' % (d['PDBFileID'], '+'.join(['%s:%s:%s' % (mutation_d['Chain'], mutation_d['ResidueID'].strip(), mutation_d['MutantAA']) for mutation_d in mutations]), d['RecordID']) else: key = '%s_%s' % (d['PDBFileID'], '+'.join(['%s:%s:%s' % (mutation_d['Chain'], mutation_d['ResidueID'].strip(), mutation_d['MutantAA']) for mutation_d in mutations])) if record_data.get(key): colortext.warning('KEY EXISTS: %s' % key) print('Existing record: %s' % pprint.pformat(record_data[key])) print('New record: %s' % pprint.pformat(d)) failure_count += 1 record_data[key] = d colortext.message('Mutation count') colortext.warning(pprint.pformat(mutation_count)) if failure_count > 0: colortext.error('Total length of dataset: %d. Failed on %d records.' % (len(record_data), failure_count)) else: colortext.message('Total length of dataset: %d. ' % (len(record_data))) record_list = [] for k, v in sorted(record_data.iteritems()): record_list.append(v) colortext.message('Adding dataset %s with %d records, %d PDB files, and %d references.' % (dataset_ID, len(record_list), len(pdb_data), len(pub_data))) JSON_datasets[dataset_ID]['data'] = record_list
#!/usr/bin/python # encoding: utf-8 """ ligand.py test code. Created by Shane O'Connor 2016 """ import sys import os sys.path.insert(0, os.path.join('..', '..')) from klab.bio.ligand import Ligand, PDBLigand from klab import colortext l = Ligand.retrieve_data_from_rcsb('NAG', pdb_id = '1WCO', silent = True, cached_dir = '/tmp') colortext.warning(l) l = Ligand.retrieve_data_from_rcsb('GDP', silent = True, cached_dir = '/tmp') colortext.pcyan(l) l = PDBLigand.instantiate_from_ligand(l, 'A', ' 124B') colortext.porange(l) l = PDBLigand.retrieve_data_from_rcsb('GOL', '1BXO', 'A', ' 12B', pdb_ligand_code='TST', silent = True, cached_dir = '/tmp') colortext.ppurple(l)
def print_schema(self): c = 1 for x in self.sanitize_schema().split('\n'): colortext.warning('%04d: %s' % (c, x)) c += 1