示例#1
0
文件: ex.py 项目: arocchi/Klampt
 def idle(self):
     if self.transitPath and self.transferPath and self.retractPath:
         #loop the path animation
         n = len(self.transitPath)+len(self.transferPath)+len(self.retractPath)-2
         u = (self.ttotal - self.animationTime)*3.0
         i = int(math.floor(u))
         s = u - i
         i = i%(n-1)
         if i+1 < len(self.transitPath):
             q = vectorops.interpolate(self.transitPath[i],self.transitPath[i+1],s)
             #set the robot configuration for display
             self.robot.setConfig(q)
             self.object.setTransform(*self.Tstart)
         elif i+1 < len(self.transitPath)+len(self.transferPath)-1:
             #index into the transfer path
             i = i - (len(self.transitPath)-1)
             q = vectorops.interpolate(self.transferPath[i],self.transferPath[i+1],s)
             Tobj = graspedObjectTransform(self.robot,self.hand,self.transferPath[0],self.Tstart,q)
             self.robot.setConfig(q)
             self.object.setTransform(*Tobj)
         else:
             #index into the transfer path
             i = i - (len(self.transitPath)-1) - (len(self.transferPath)-1)
             q = vectorops.interpolate(self.retractPath[i],self.retractPath[i+1],s)
             self.robot.setConfig(q)
             self.object.setTransform(*self.Tgoal)
         glutPostRedisplay()
示例#2
0
 def idle(self):
     if self.transitPath and self.transferPath and self.retractPath:
         #loop the path animation
         n = len(self.transitPath) + len(self.transferPath) + len(
             self.retractPath) - 2
         u = (self.ttotal - self.animationTime) * 3.0
         i = int(math.floor(u))
         s = u - i
         i = i % (n - 1)
         if i + 1 < len(self.transitPath):
             q = vectorops.interpolate(self.transitPath[i],
                                       self.transitPath[i + 1], s)
             #set the robot configuration for display
             self.robot.setConfig(q)
             self.object.setTransform(*self.Tstart)
         elif i + 1 < len(self.transitPath) + len(self.transferPath) - 1:
             #index into the transfer path
             i = i - (len(self.transitPath) - 1)
             q = vectorops.interpolate(self.transferPath[i],
                                       self.transferPath[i + 1], s)
             Tobj = graspedObjectTransform(self.robot, self.hand,
                                           self.transferPath[0],
                                           self.Tstart, q)
             self.robot.setConfig(q)
             self.object.setTransform(*Tobj)
         else:
             #index into the transfer path
             i = i - (len(self.transitPath) - 1) - (len(self.transferPath) -
                                                    1)
             q = vectorops.interpolate(self.retractPath[i],
                                       self.retractPath[i + 1], s)
             self.robot.setConfig(q)
             self.object.setTransform(*self.Tgoal)
         glutPostRedisplay()
示例#3
0
 def relevance(problem):
     feasible = problem.concept()
     d = vectorops.distance(problem.start, problem.goal)
     h = 0.2
     nsteps = int(math.ceil(d / h))
     env_relevance = np.zeros((W, H))
     #try including some adjacent features
     #footprint = [(0,0),(-1,0),(1,0),(0,-1),(0,1)]
     footprint = []
     for i in range(nsteps + 1):
         if nsteps == 0:
             x = problem.start
         else:
             x = vectorops.interpolate(problem.start, problem.goal,
                                       float(i) / nsteps)
         x = (int(x[0]), int(x[1]))
         if feasible or problem.env[x]:
             env_relevance[x] = 1
             for (dx, dy) in footprint:
                 if 0 <= x[0] + dx < W and 0 <= x[1] + dy < H:
                     env_relevance[x[0] + dx, x[1] + dy] = 1
     if hierarchical:
         features = [1] * 2 + [1] * 2
         h = build_hierarchy(env_relevance)
         for m in h:
             features += [int(v) for v in m.flatten().tolist()]
         return features
     return [1] * 2 + [1] * 2 + [
         int(v) for v in env_relevance.flatten().tolist()
     ]
示例#4
0
    def idle(self):
        if self.running:
            if time() - self.time_mark >= self.delay:
                self.active_index += self.direction
                self.time_mark = time()

                if self.active_index <= 0:
                    # self.direction = 1
                    self.active_index = 0
                # elif self.active_index >= len(self.plan)-1:
                #    #self.direction = -1
                #    self.active_index = len(self.plan)-1
                elif self.active_index >= len(self.plan):
                    self.active_index = 0

                logger.info("config {} of {}".format(self.active_index, len(self.plan) - 1))

        if self.plan:
            u = (time() - self.time_mark) / self.delay
            if self.active_index + 1 < len(self.plan):
                self.knowledge_base.robot_state.sensed_config = vectorops.interpolate(
                    self.plan[self.active_index], self.plan[self.active_index + 1], u
                )
            else:
                self.knowledge_base.robot_state.sensed_config = self.plan[self.active_index]
        glutPostRedisplay()
示例#5
0
文件: ex.py 项目: arocchi/Klampt
 def idle(self):
     if self.path:
         #loop the path animation
         u = (self.ttotal - self.animationTime)
         i = int(math.floor(u))
         s = u - i
         i = i%(len(self.path)-1)
         #set the robot configuration for display
         q = vectorops.interpolate(self.path[i],self.path[i+1],s)
         self.robot.setConfig(q)
         glutPostRedisplay()
示例#6
0
 def idle(self):
     if self.path:
         #loop the path animation
         u = (self.ttotal - self.animationTime)
         i = int(math.floor(u))
         s = u - i
         i = i % (len(self.path) - 1)
         #set the robot configuration for display
         q = vectorops.interpolate(self.path[i], self.path[i + 1], s)
         self.robot.setConfig(q)
         glutPostRedisplay()
示例#7
0
文件: ex.py 项目: arocchi/Klampt
 def idle(self):
     if self.path:
         #loop the path animation
         u = (self.ttotal - self.animationTime)
         i = int(math.floor(u))
         s = u - i
         i = i%(len(self.path)-1)
         q = vectorops.interpolate(self.path[i],self.path[i+1],s)
         #set the robot configuration for display
         self.robot.setConfig(q)
         #compute and set object transform for display
         Tobj = graspedObjectTransform(self.robot,Hand('l'),self.qstart,self.Tstart,q)
         self.object.setTransform(*Tobj)
         glutPostRedisplay()
示例#8
0
 def idle(self):
     if self.path:
         #loop the path animation
         u = (self.ttotal - self.animationTime)
         i = int(math.floor(u))
         s = u - i
         i = i % (len(self.path) - 1)
         q = vectorops.interpolate(self.path[i], self.path[i + 1], s)
         #set the robot configuration for display
         self.robot.setConfig(q)
         #compute and set object transform for display
         Tobj = graspedObjectTransform(self.robot, Hand('l'), self.qstart,
                                       self.Tstart, q)
         self.object.setTransform(*Tobj)
         glutPostRedisplay()
示例#9
0
 def concept(problem):  # compute y
     d = vectorops.distance(problem.start, problem.goal)
     h = 0.2
     nsteps = int(math.ceil(d / h))
     collisions = 0
     #hacky "rasterization" by marching down segment
     for i in range(nsteps + 1):
         if nsteps == 0:
             x = problem.start
         else:
             x = vectorops.interpolate(problem.start, problem.goal,
                                       i / nsteps)
         if sphere_collision(x, robot_radius, problem.env):
             # colliding
             return 0
     #collision free
     return 1
 def relevance(problem):
     feasible = problem.concept()
     d = vectorops.distance(problem.start, problem.goal)
     h = 0.2
     nsteps = int(math.ceil(d / h))
     env_relevance = np.zeros(workspace_size)
     for i in range(nsteps + 1):
         if nsteps == 0:
             x = problem.start
         else:
             x = vectorops.interpolate(problem.start, problem.goal,
                                       float(i) / nsteps)
         for (a, b, c) in sphere_collision_tests(x, robot_radius,
                                                 problem.env):
             if feasible or problem.env[(a, b, c)]:
                 env_relevance[(a, b, c)] = 1
     return [1] * 3 + [1] * 3 + env_relevance.flatten().tolist()
示例#11
0
 def concept(problem):
     d = vectorops.distance(problem.start, problem.goal)
     h = 0.2
     nsteps = int(math.ceil(d / h))
     collisions = 0
     #hacky "rasterization" by marching down segment
     for i in range(nsteps + 1):
         if nsteps == 0:
             x = problem.start
         else:
             x = vectorops.interpolate(problem.start, problem.goal,
                                       float(i) / nsteps)
         if problem.env[int(x[0]), int(x[1])]:
             collisions += 1
             if collisions >= label_obstacle_threshold:
                 return 0
     #collision free
     return 1
 def eval(self,u):
     return vectorops.interpolate(self.a,self.b,u)
 def eval(self, u):
     return vectorops.interpolate(self.a, self.b, u)
 def interpolate(self,a,b,u):
     return vectorops.interpolate(a,b,u)