示例#1
0
kT = 1
I_0 = np.logspace(-1, 2, 10) * kT
bias = np.linspace(-10 * kT, 10 * kT, 100)
ab_R = np.array([0.25])
current = np.zeros((len(I_0), len(ab_R), len(bias)))

#%% Initialize system
kmc = kmc_dn.kmc_dn(1, 0, xdim, ydim, 0, electrodes=electrodes)
kmc.load_acceptors(acceptors)
tic = time.time()
#%% Simulation loop
for i in range(len(I_0)):
    for j in range(len(ab_R)):

        # Set constants
        kmc.kT = kT
        kmc.I_0 = I_0[i]
        kmc.ab = ab_R[j] * kmc.R
        kmc.initialize(placement=False)

        # Simulate
        current_sim = kmc_dn_utils.IV(kmc, 0, bias, hops=1000)
        current[i, j] = current_sim[:, 0]
print(f'{time.time() - tic}')
np.savez('current_map', current=current, I_0=I_0, ab_R=ab_R, bias=bias)
#%% Visualize
domain = kmc_dn_utils.visualize_basic(kmc)
#plt.figure()
#plt.plot(bias, current[:, 0])
plt.show()
示例#2
0
electrodes = np.zeros((2, 4))
electrodes[0] = [0, 0, 0, 10]
electrodes[1] = [xdim, 0, 0, 0]

#%% Initialize simulation object
kmc = kmc_dn.kmc_dn(N, M, xdim, ydim, zdim, mu=mu, electrodes=electrodes)

# Set U_0 = kmc.kT
U_0 = 0.1 * kmc.kT

# Place single atom in middle of domain
acceptors = np.array([[xdim / 2, 0, 0]])
kmc.load_acceptors(acceptors)

# Set ab >> R, such that distance does not matter
kmc.ab = 100000 * kmc.R
kmc.initialize(V=False, dopant_placement=False)

#%% Current simulation with backgate

# Voltages
bias = np.linspace(-100 * U_0, 100 * U_0, num=101)
current = np.zeros((avg, 2, len(bias)))

# IV measurement
for i in range(avg):
    current[i] = kmc_dn_ut.IV(kmc, 0, bias, hops=hops)

# Save
np.savez('data', bias=bias, current=current)
示例#3
0
kmc = kmc_dn.kmc_dn(1, 0, xdim, ydim, 0, electrodes=electrodes, callback = 'none')
kmc.load_acceptors(acceptors)
kmc.R = R

# Set constants
kmc.kT = kT
kmc.I_0 = I_0
kmc.ab = ab_R*kmc.R
kmc.initialize(placement = False)

#%% Simulate IV curve
V_high = -250
points = 100
prehops = 5000
tol = 1E-3
interval = 5000
hops = 1000
avg = 10
bias = np.linspace(V_high, 0, points)
current = np.zeros((avg, points, 2))
for i in range(avg):
    current[i] = kmc_dn_utils.IV(kmc, 0, bias, prehops = prehops, tol = tol, interval = interval) 
current_avg = np.mean(current, axis = 0)

#%% Save data
np.savez('data', current = current, bias = bias, kT = kT, I_0 = I_0, ab_R = ab_R)
#%% Visualize
plt.figure()
plt.plot(-bias, current_avg[:, 0])
plt.show()
示例#4
0
                        0,
                        electrodes=electrodes,
                        callback='none')
    kmc.load_acceptors(acceptors)
    kmc.load_donors(donors)
    #%% Simulation loop
    for i in range(len(I_0)):
        for j in range(len(ab_R)):

            # Set constants
            kmc.kT = kT
            kmc.I_0 = I_0[i]
            kmc.ab = ab_R[j] * kmc.R
            kmc.initialize(dopant_placement=False)

            # Simulate
            current_sim = kmc_dn_utils.IV(kmc,
                                          0,
                                          bias,
                                          prehops=prehops,
                                          hops=hops)
            current[k, i, j] = current_sim[:, 1]

#np.savez('data', current = current, I_0 = I_0, ab_R = ab_R, bias = bias)
#%% Visualize
domain = kmc_dn_utils.visualize_basic(kmc)
plt.figure()
for i in range(current.shape[0]):
    plt.plot(bias, current[i, 0, 0])
plt.show()
示例#5
0
                    0,
                    electrodes=electrodes,
                    callback='none')
kmc.load_acceptors(acceptors)
kmc.load_donors(donors)
#%% Simulation loop
for i in range(len(I_0)):
    for j in range(len(ab_R)):

        # Set constants
        kmc.kT = kT
        kmc.I_0 = I_0[i]
        kmc.ab = ab_R[j] * kmc.R
        kmc.initialize(placement=False)

        # Simulate
        current_sim = kmc_dn_utils.IV(kmc,
                                      0,
                                      bias,
                                      tol=1E-3,
                                      prehops=1000,
                                      interval=1000)
        current[i, j] = current_sim[:, 1]

np.savez('data', current=current, I_0=I_0, ab_R=ab_R, bias=bias)
#%% Visualize
domain = kmc_dn_utils.visualize_basic(kmc)
plt.figure()
plt.plot(bias, current[0, 0])
plt.show()
示例#6
0
P = [0, 1, 0, 1]
Q = [0, 0, 1, 1]
w = [1, 1, 1, 1]
kmc.electrodes[cf.output] = 0

# Set control voltages and electrode 0 to high
for index, control in enumerate(cf.controls):
    kmc.electrodes[control, 3] = (1-cf.gene[index])*cf.controlrange[0] \
                                 + cf.gene[index]*cf.controlrange[1]
kmc.electrodes[cf.P, 3] = cf.inputrange

if cf.allzero:
    kmc.electrodes[:, 3] = 0

kmc.update_V()

# Obtain IV curve by sweeping electrode 1
currentlist = np.zeros((cf.avg, 8, cf.n_voltage))
for i in range(cf.avg):
    currentlist[i] = kmc_dn_utils.IV(kmc,
                                     cf.sweep_electrode,
                                     cf.voltagelist,
                                     hops=cf.hops,
                                     prehops=cf.prehops)

SaveLib.saveExperiment(saveDirectory, V=cf.voltagelist, I=currentlist)

plt.figure()
plt.plot(cf.voltagelist, currentlist[0, cf.output])
plt.show()
示例#7
0
for i in range(4):
    for j in range(4):
        acceptors[4 * i + j] = [(i + 1) * xdim / 5, (j + 1) * ydim / 5, 0]
electrodes = np.zeros((2, 4))
electrodes[0] = [0, ydim / 2, 0, 10]
electrodes[1] = [xdim, ydim / 2, 0, 0]
kT = 1
bias = np.linspace(-10 * kT, 10 * kT, 100)
I_0 = 1000
ab_R = 0.1

#%% Initialize system
kmc = kmc_dn.kmc_dn(1, 0, xdim, ydim, 0, electrodes=electrodes)
kmc.load_acceptors(acceptors)
tic = time.time()
#%% Simulation loop

# Set constants
kmc.kT = kT
kmc.I_0 = I_0
kmc.ab = ab_R * kmc.R
kmc.initialize(placement=False)
# Simulate
current_sim = kmc_dn_utils.IV(kmc, 0, bias, interval=1000)
current = current_sim[:, 0]
#%% Visualize

plt.figure()
plt.plot(bias, current)
plt.show()
示例#8
0
    kmc.kT = kT
    kmc.I_0 = cf.I_0
    kmc.ab = cf.ab_R * kmc.R

    # Update constant quantities that depend on I_0 and ab
    kmc.calc_E_constant()
    kmc.calc_transitions_constant()

    # Initialize starting occupation
    kmc.place_charges_random()
    start_occupation = kmc.occupation.copy()

    # Obtain device response
    currents = kmc_dn_utils.IV(kmc,
                               cf.bias_electrode,
                               voltagelist,
                               prehops=prehops,
                               hops=hops,
                               printETA=True)
    output = currents[1].copy()

    # Save output and kmc object
    outputs[ii] = output
    kmc.saveSelf(filepath + '/kmc_objects/' + '{0:03}'.format(ii) + '.kmc')

# Save experiment
SaveLib.saveExperiment(
    filepath,
    outputs=outputs,
    voltagelist=voltagelist,
)
示例#9
0
        kmc.I_0 = cf.generange[0][0] + genePool.pool[j, 0] \
                  * (cf.generange[0][1] - cf.generange[0][0])
        kmc.ab = cf.generange[1][0] + genePool.pool[j, 1] \
                  * (cf.generange[1][1] - cf.generange[1][0])
        kmc.ab = kmc.ab * kmc.R

        # Update constant quantities that depend on I_0 and ab
        kmc.calc_E_constant()
        kmc.calc_transitions_constant()

        fitness_list = []
        # Obtain device response
        for l in range(cf.avg):
            current_array = kmc_dn_utils.IV(kmc,
                                            0,
                                            voltagelist,
                                            prehops=prehops,
                                            hops=hops)
            output = current_array[1]
        outputArray[i, j] = output
        fitness_list.append(cf.Fitness(output, target))

        genePool.fitness[j] = min(fitness_list)
        fitnessArray[i, j] = genePool.fitness[j]

    # Status print
    print("Generation nr. " + str(i + 1) + " completed")
    print("Highest fitness: " + str(max(genePool.fitness)))

    # Evolve to the next generation
    genePool.NextGen()