示例#1
0
def main():
    nnodes = 100
    # an easy way to set up the graph is to make
    # a dictionary of rates
    rates = dict()
    for i in range(nnodes):
        for j in range(i+1,nnodes):
            rates[(i,j)] = float(i+j) / (i+1)
            rates[(j,i)] = float(i+j) / (j+1)

    # we want to compute rates from node 0 to node 1
    A = [0 ,1, 2]
    B = [3, 4]
    x = 2
    
    weights=dict([(a,1.) for a in A+B])
    weights[2] = 5e3


    ngt = NGT(rates, A, B)
    ngt.compute()
    kAB = ngt.get_rate_AB()
    kBA = ngt.get_rate_BA()
    print "rate AB", kAB
    print "rate BA", kBA
    
    graph = kmcgraph_from_rates(rates)
    pyngt = GraphReduction(graph, A, B)
    pyngt.compute_rates()
    print "pyngt rate AB", pyngt.get_rate_AB()
    print "pyngt rate AB", pyngt.get_rate_BA()
 def _test_rate(self, i, j):
     reducer = GraphReduction(self.rates, [i], [j], debug=True)
     reducer.check_graph()
     reducer.compute_rates()
     rAB = reducer.get_rate_AB()
     rBA = reducer.get_rate_BA()
     reducer.check_graph()
     self.assertEqual(reducer.graph.number_of_nodes(), 2)
     self.assertEqual(reducer.graph.number_of_edges(), 4)
     self.assertAlmostEqual(rAB, self.final_rate, 7)
     self.assertAlmostEqual(rBA, self.final_rate, 7)
 def do_check(self, A, B, nnodes=20, nedges=20):
     maker = _MakeRandomGraph(nnodes=20, nedges=20, node_set=A+B)
     graph = maker.run()
     reducer = GraphReduction(maker.rates, A, B, debug=False)  
     reducer.check_graph()
     reducer.compute_rates()
     rAB = reducer.get_rate_AB()
     rBA = reducer.get_rate_BA()
     reducer.check_graph()
     self.assertEqual(reducer.graph.number_of_nodes(), len(A) + len(B))
     if len(A) == 1 and len(B) == 1:
         self.assertLessEqual(reducer.graph.number_of_edges(), 4)
示例#4
0
    def compare(self, A, B, nnodes=10, nedges=20, weights=None, x=1):
        print ""
        maker = _MakeRandomGraph(nnodes=nnodes, nedges=nedges, node_set=A+B+[x])
        graph = maker.run()
        graph_backup = graph.copy()
        reducer = GraphReduction(maker.rates, A, B, weights=weights)
        kmc = KineticMonteCarlo(graph_backup, debug=False)
        
        # test compute_committor_probability()
        PxB = reducer.compute_committor_probability(x)
        PxB_kmc = kmc.committor_probability(x, A, B, niter=1000)
        print "committor probability    ", x, "->", B, "=", PxB
        print "committor probability kmc", x, "->", B, "=", PxB_kmc
        self.assertAlmostEqual(PxB, PxB_kmc, delta=.1)
        
        reducer.compute_rates()
        rAB = reducer.get_rate_AB()
        rBA = reducer.get_rate_BA()
        rAB_SS = reducer.get_rate_AB_SS()
        
        # compute rate via linalg
        lin = TwoStateRates(maker.rates, A, B, weights=weights)
        lin.compute_rates()
        rAB_LA = lin.get_rate_AB()
        lin.compute_committors()
        rAB_SS_LA = lin.get_rate_AB_SS()
        self.assertAlmostEqual(rAB_SS, rAB_SS_LA, 5)
        PxB_LA = lin.get_committor(x)
        if x not in A and x not in B:
            self.assertAlmostEqual(PxB, PxB_LA, 5)
        
         
        rAB_KMC = kmc.mean_rate(A, B, niter=1000, weights=weights)
        
        print "NGT rate A->B", rAB
        print "KMC rate A->B", rAB_KMC
        print "normalized difference", (rAB - rAB_KMC)/rAB 
        print "normalized difference to linalg", (rAB - rAB_LA)/rAB 
        self.assertLess(abs(rAB - rAB_KMC)/rAB, .1)
        self.assertLess(abs(rAB - rAB_LA)/rAB, .00001)


        rBA_KMC = kmc.mean_rate(B, A, niter=1000, weights=weights)
         
        print "NGT rate B->A", rBA
        print "KMC rate B->A", rBA_KMC
        print "normalized difference", (rBA - rBA_KMC)/rBA
        self.assertLess(abs(rBA - rBA_KMC)/rBA, .1)
        
        paB = kmc.committor_probability(A[0], [A[0]], B, niter=1000)
        print "the committor probability a->B", paB
        print "graph reduction committor prob", reducer.get_committor_probabilityAB(A[0])
        self.assertAlmostEqual(paB, reducer.get_committor_probabilityAB(A[0]), delta=.1)