示例#1
0
def lens_rand_jk(zmin, zmax, jk):

    lens_file = h5py.File('LRG_lum_jk.h5')
    lens_z = lens_file["redshift"][:]
    lens_ra = lens_file["RA"][:]
    lens_dec = lens_file["DEC"][:]
    coord_lens_jk = np.vstack([lens_ra, lens_dec]).T
    centers = np.loadtxt("centers.txt")
    labels_lens = kmeans_radec.find_nearest(coord_lens_jk, centers)

    label_mask = labels_lens == jk
    lens_mask = (lens_z > zmin) & (lens_z < zmax) & (~label_mask)

    lens_z = lens_z[lens_mask]
    lens_ra = lens_ra[lens_mask]
    lens_dec = lens_dec[lens_mask]

    nlens = len(lens_z)

    lens_input = np.vstack(
        [np.arange(nlens), lens_ra, lens_dec, lens_z,
         np.ones((nlens))]).T

    random_file = h5py.File("randoms_jk.h5")
    random_coord = random_file["random_jk"][:]
    random_ra = random_coord[:, 0]
    random_dec = random_coord[:, 1]

    centers = np.loadtxt("centers.txt")
    labels_random = kmeans_radec.find_nearest(random_coord, centers)

    label_mask = labels_random == jk
    random_ra = random_ra[~label_mask]
    random_dec = random_dec[~label_mask]
    random_file.close()

    nrands = len(random_ra)
    shuffle = np.random.choice(nrands, 10 * nlens)
    random_ra = random_ra[shuffle]
    random_dec = random_dec[shuffle]
    nrands = len(random_ra)

    print "nrands/nlens", nrands * 1. / nlens

    zdist = lens_z
    hist, bins = np.histogram(zdist, bins=100)
    bin_midpoints = bins[:-1] + np.diff(bins) / 2
    cdf = np.cumsum(hist)
    cdf = cdf / float(cdf[-1])
    values = np.random.rand(nrands)
    value_bins = np.searchsorted(cdf, values)
    random_z = bin_midpoints[value_bins]

    rands_input = np.stack([
        np.arange(nrands), random_ra, random_dec, random_z,
        np.ones((nrands))
    ]).T

    return lens_input, rands_input
示例#2
0
def incomplete_shear_preprocess(zmin, zmax):

    shear = fitsio.read("source_v2.fits",
                        columns=[
                            "ra_gal", "dec_gal", "observed_redshift_gal",
                            "gamma1", "gamma2"
                        ])
    ra, dec, z = shear["ra_gal"], shear["dec_gal"], shear[
        "observed_redshift_gal"]
    g1, g2 = shear["gamma1"], shear["gamma2"]

    dz = 0.05 * (1 + z)  #redshift uncertainties
    z = np.random.normal(z, dz)  #perturbed redshifts

    mask = (z > zmax + 0.1)
    z = z[mask]
    ra, dec = ra[mask], dec[mask]
    g1, g2 = g1[mask], g2[mask]

    print("length of the catalog after applying the cut", len(ra))
    coord = np.vstack([ra, dec]).T
    centers = np.loadtxt("flagship_jk_centers_v2.txt")
    NJK = centers.shape[0]
    print("Segmentation begins!")
    gal_labels_jk = kmeans_radec.find_nearest(coord, centers)
    print("Done with assigning jacknife labels to galaxies")

    gals = {
        "RA": ra,
        "DEC": dec,
        "gamma1": g1,
        "gamma2": g2,
        "redshift": z,
        "JK_LABEL": gal_labels_jk
    }

    fits = FITS('data/incomplete_shear_zmax_' + str(round(zmax, 1)) + '.fits',
                'rw')
    fits.write(gals,
               names=["RA", "DEC", "gamma1", "gamma2", "redshift", "JK_LABEL"])
    fits.close()

    for jk in range(len(centers)):

        gal_jk_mask = gals["JK_LABEL"] != jk
        gal_jk = {
            "RA": ra[gal_jk_mask],
            "DEC": dec[gal_jk_mask],
            "gamma1": g1[gal_jk_mask],
            "gamma2": g2[gal_jk_mask],
            "redshift": z[gal_jk_mask]
        }

        fits = FITS(
            'data/incomplete_shear_zmax_' + str(round(zmax, 1)) + '_jk_' +
            str(jk) + '.fits', 'rw')
        fits.write(gal_jk, names=["RA", "DEC", "gamma1", "gamma2", "redshift"])
        fits.close()

    return None
def segment_data(RA, DEC):

    coord = np.vstack([RA, DEC]).T
    #centers of the jacknife regions
    centers = np.loadtxt("new_DR4_9bandnoAwr_uniform_centers.txt")
    #number of jacknife regions
    NJK = centers.shape[0]
    print("Segmentation begins!")
    labels_jk = kmeans_radec.find_nearest(coord, centers)
    print("Done with assigning jacknife labels to galaxies")
    #final_cat = {"RA": RA,
    #	    "DEC": DEC,
    #    "JK_LABEL": labels_jk}
    return labels_jk
示例#4
0
def find_kmeans_labels(points, centers):
    import numpy as np
    import kmeans_radec as kmrd
    import sys

    # Make sure ra, dec, and centers have correct shapes
    assert points.shape[0] == 2 or points.shape[
        1] == 2, "Points must have RA and Dec"
    if points.shape[0] == 2:
        points.T
    assert centers.shape[0] == 2 or centers.shape[
        1] == 2, "Centers must have RA and Dec"
    if centers.shape[0] == 2:
        centers.T

    # Run find_nearest
    return (kmrd.find_nearest(points, centers))
示例#5
0
def incomplete_gal_preprocess(zmin, zmax):

    lens = fitsio.read("lens.fits",
                       columns=["ra_gal", "dec_gal", "observed_redshift_gal"])
    ra, dec, z = lens["ra_gal"], lens["dec_gal"], lens["observed_redshift_gal"]
    mask = (z > zmin) & (z < zmax)
    ra, dec, z = ra[mask], dec[mask], z[mask]

    random_choice = np.random.choice(np.arange(len(ra)),
                                     int(0.45 * len(ra)),
                                     replace=False)
    ra, dec, z = ra[random_choice], dec[random_choice], z[random_choice]

    print("length of the catalog after applying the cut", len(ra))
    coord = np.vstack([ra, dec]).T
    centers = np.loadtxt("flagship_jk_centers_v2.txt")
    NJK = centers.shape[0]
    print("Segmentation begins!")
    gal_labels_jk = kmeans_radec.find_nearest(coord, centers)
    print("Done with assigning jacknife labels to galaxies")

    gals = {"RA": ra, "DEC": dec, "redshift": z, "JK_LABEL": gal_labels_jk}

    fits = FITS('data/incomplete_gal_zmax_' + str(round(zmax, 1)) + '.fits',
                'rw')
    fits.write(gals, names=["RA", "DEC", "redshift", "JK_LABEL"])
    fits.close()

    for jk in range(len(centers)):

        gal_jk_mask = gals["JK_LABEL"] != jk
        gal_jk = {
            "RA": ra[gal_jk_mask],
            "DEC": dec[gal_jk_mask],
            "redshift": z[gal_jk_mask]
        }

        fits = FITS(
            'data/incomplete_gal_zmax_' + str(round(zmax, 1)) + '_jk_' +
            str(jk) + '.fits', 'rw')
        fits.write(gal_jk, names=["RA", "DEC", "redshift"])
        fits.close()

    return None
示例#6
0
import seaborn as sns
from kmeans_radec import KMeans, kmeans_sample

random_file = h5py.File("randoms_jk.h5")
random_coord = random_file["random_jk"][:]
random_ra = random_coord[:, 0]
random_dec = random_coord[:, 1]
random_file.close()

random_file_jk = h5py.File("randoms_jk.h5")
coord_rand_jk = random_file_jk["random_jk"][:]
random_ra_jk = coord_rand_jk[:, 0]
random_dec_jk = coord_rand_jk[:, 1]
random_file_jk.close()
centers = np.loadtxt("centers.txt")
labels_random_jk = kmeans_radec.find_nearest(coord_rand_jk, centers)

lens_file_jk = h5py.File("LRG_dense_jk.h5")
dense_jk_mask = h5py.File("dense_jk_mask.h5")
dense_mask = dense_jk_mask["mask"][:]
dense_jk_mask.close()
lens_z_jk = lens_file_jk["redshift"][dense_mask]
lens_ra_jk = lens_file_jk["RA"][dense_mask]
lens_dec_jk = lens_file_jk["DEC"][dense_mask]
lens_file_jk.close()
coord_lens_jk = np.vstack([lens_ra_jk, lens_dec_jk]).T
centers = np.loadtxt("centers.txt")
labels_lens_jk = kmeans_radec.find_nearest(coord_lens_jk, centers)

random_ra = random_coord[:, 0]
random_dec = random_coord[:, 1]
示例#7
0
def get_center_labels(x, cent):
    return kmrd.find_nearest(x.T, cent)