def plot_runtime(ex, fname, func_xvalues, xlabel, func_title=None): results = glo.ex_load_result(ex, fname) value_accessor = lambda job_results: job_results['time_secs'] vf_pval = np.vectorize(value_accessor) # results['job_results'] is a dictionary: # {'test_result': (dict from running perform_test(te) '...':..., } times = vf_pval(results['job_results']) repeats, _, n_methods = results['job_results'].shape time_avg = np.mean(times, axis=0) time_std = np.std(times, axis=0) xvalues = func_xvalues(results) #ns = np.array(results[xkey]) #te_proportion = 1.0 - results['tr_proportion'] #test_sizes = ns*te_proportion line_styles = func_plot_fmt_map() method_labels = get_func2label_map() func_names = [f.__name__ for f in results['method_funcs']] for i in range(n_methods): #te_proportion = 1.0 - results['tr_proportion'] fmt = line_styles[func_names[i]] #plt.errorbar(ns*te_proportion, mean_rejs[:, i], std_pvals[:, i]) method_label = method_labels[func_names[i]] plt.errorbar(xvalues, time_avg[:, i], yerr=time_std[:, i], fmt=fmt, label=method_label) ylabel = 'Time (s)' plt.ylabel(ylabel) plt.xlabel(xlabel) plt.xlim([np.min(xvalues), np.max(xvalues)]) plt.xticks(xvalues, xvalues) plt.legend(loc='best') plt.gca().set_yscale('log') title = '%s. %d trials. ' % ( results['prob_label'], repeats) if func_title is None else func_title(results) plt.title(title) #plt.grid() return results
def run_problem(prob_label): """Run the experiment""" # /////// submit jobs ////////// # create folder name string #result_folder = glo.result_folder() from kmod.config import expr_configs tmp_dir = expr_configs['scratch_path'] foldername = os.path.join(tmp_dir, 'kmod_slurm', 'e%d' % ex) logger.info("Setting engine folder to %s" % foldername) # create parameter instance that is needed for any batch computation engine logger.info("Creating batch parameter instance") batch_parameters = BatchClusterParameters(foldername=foldername, job_name_base="e%d_" % ex, parameter_prefix="") # Use the following line if Slurm queue is not used. #engine = SerialComputationEngine() partitions = expr_configs['slurm_partitions'] if partitions is None: engine = SlurmComputationEngine(batch_parameters) else: engine = SlurmComputationEngine(batch_parameters, partition=partitions) n_methods = len(method_funcs) # problem setting ns, P, Q, ds, = get_ns_pqrsource(prob_label) # repetitions x len(ns) x #methods aggregators = np.empty((reps, len(ns), n_methods), dtype=object) for r in range(reps): for ni, n in enumerate(ns): for mi, f in enumerate(method_funcs): # name used to save the result func_name = f.__name__ fname = '%s-%s-n%d_r%d_a%.3f.p' \ %(prob_label, func_name, n, r, alpha,) if not is_rerun and glo.ex_file_exists(ex, prob_label, fname): logger.info('%s exists. Load and return.' % fname) job_result = glo.ex_load_result(ex, prob_label, fname) sra = SingleResultAggregator() sra.submit_result(SingleResult(job_result)) aggregators[r, ni, mi] = sra else: # result not exists or rerun job = Ex1Job(SingleResultAggregator(), P, Q, ds, prob_label, r, f, n) agg = engine.submit_job(job) aggregators[r, ni, mi] = agg # let the engine finish its business logger.info("Wait for all call in engine") engine.wait_for_all() # ////// collect the results /////////// logger.info("Collecting results") job_results = np.empty((reps, len(ns), n_methods), dtype=object) for r in range(reps): for ni, n in enumerate(ns): for mi, f in enumerate(method_funcs): logger.info("Collecting result (%s, r=%d, n=%d)" % (f.__name__, r, n)) # let the aggregator finalize things aggregators[r, ni, mi].finalize() # aggregators[i].get_final_result() returns a SingleResult instance, # which we need to extract the actual result job_result = aggregators[r, ni, mi].get_final_result().result job_results[r, ni, mi] = job_result #func_names = [f.__name__ for f in method_funcs] #func2labels = exglobal.get_func2label_map() #method_labels = [func2labels[f] for f in func_names if f in func2labels] # save results results = { 'job_results': job_results, 'P': P, 'Q': Q, 'data_source': ds, 'alpha': alpha, 'repeats': reps, 'ns': ns, 'method_funcs': method_funcs, 'prob_label': prob_label, } # class name fname = 'ex%d-%s-me%d_rs%d_nmi%d_nma%d_a%.3f.p' \ %(ex, prob_label, n_methods, reps, min(ns), max(ns), alpha,) glo.ex_save_result(ex, results, fname) logger.info('Saved aggregated results to %s' % fname)
def plot_prob_reject(ex, fname, func_xvalues, xlabel, func_title=None, return_plot_values=False): """ plot the empirical probability that the statistic is above the threshold. This can be interpreted as type-1 error (when H0 is true) or test power (when H1 is true). The plot is against the specified x-axis. - ex: experiment number - fname: file name of the aggregated result - func_xvalues: function taking aggregated results dictionary and return the values to be used for the x-axis values. - xlabel: label of the x-axis. - func_title: a function: results dictionary -> title of the plot - return_plot_values: if true, also return a PlotValues as the second output value. Return loaded results """ #from IPython.core.debugger import Tracer #Tracer()() results = glo.ex_load_result(ex, fname) def rej_accessor(jr): rej = jr['test_result']['h0_rejected'] # When used with vectorize(), making the value float will make the resulting # numpy array to be of float. nan values can be stored. return float(rej) #value_accessor = lambda job_results: job_results['test_result']['h0_rejected'] vf_pval = np.vectorize(rej_accessor) # results['job_results'] is a dictionary: # {'test_result': (dict from running perform_test(te) '...':..., } rejs = vf_pval(results['job_results']) repeats, _, n_methods = results['job_results'].shape # yvalues (corresponding to xvalues) x #methods mean_rejs = np.mean(rejs, axis=0) #print mean_rejs #std_pvals = np.std(rejs, axis=0) #std_pvals = np.sqrt(mean_rejs*(1.0-mean_rejs)) xvalues = func_xvalues(results) #ns = np.array(results[xkey]) #te_proportion = 1.0 - results['tr_proportion'] #test_sizes = ns*te_proportion line_styles = func_plot_fmt_map() method_labels = get_func2label_map() func_names = [f.__name__ for f in results['method_funcs']] plotted_methods = [] for i in range(n_methods): #te_proportion = 1.0 - results['tr_proportion'] fmt = line_styles[func_names[i]] #plt.errorbar(ns*te_proportion, mean_rejs[:, i], std_pvals[:, i]) method_label = method_labels[func_names[i]] plotted_methods.append(method_label) plt.plot(xvalues, mean_rejs[:, i], fmt, label=method_label) ''' else: # h0 is true z = stats.norm.isf( (1-confidence)/2.0) for i in range(n_methods): phat = mean_rejs[:, i] conf_iv = z*(phat*(1-phat)/repeats)**0.5 #plt.errorbar(test_sizes, phat, conf_iv, fmt=line_styles[i], label=method_labels[i]) plt.plot(test_sizes, mean_rejs[:, i], line_styles[i], label=method_labels[i]) ''' ylabel = 'Rejection rate' plt.ylabel(ylabel) plt.xlabel(xlabel) plt.xticks(np.hstack((xvalues))) alpha = results['alpha'] plt.legend(loc='best') title = '%s. %d trials. $\\alpha$ = %.2g.' % ( results['prob_label'], repeats, alpha) if func_title is None else func_title(results) plt.title(title) plt.grid() if return_plot_values: return results, PlotValues(xvalues=xvalues, methods=plotted_methods, plot_matrix=mean_rejs.T) else: return results