def main(): parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default=BEAUTY, help='One of {BEAUTY, CELL, CD, CLOTH}.') args = parser.parse_args() # Create AmazonDataset instance for dataset. # ========== BEGIN ========== # print('Load', args.dataset, 'dataset from file...') if not os.path.isdir( TMP_DIR[args.dataset] ): #if the required temp file doesn't exist, create it os.makedirs(TMP_DIR[args.dataset]) #TMP_DIR is a dict from utils.py dataset = AmazonDataset(DATASET_DIR[args.dataset]) save_dataset(args.dataset, dataset) #pickle.dump dataset to file, no return value # Generate knowledge graph instance. # ========== BEGIN ========== # print('Create', args.dataset, 'knowledge graph from dataset...') dataset = load_dataset(args.dataset) kg = KnowledgeGraph(dataset) kg.compute_degrees() save_kg(args.dataset, kg) #uses pickle.dump # =========== END =========== # # Genereate train/test labels. # ========== BEGIN ========== # print('Generate', args.dataset, 'train/test labels.') generate_labels(args.dataset, 'train') generate_labels(args.dataset, 'test')
def main(): parser = argparse.ArgumentParser() args = parser.parse_args() args.dataset = config["dataset"] # Create AmazonDataset instance for dataset. # ========== BEGIN ========== # print("Load", args.dataset, "dataset from file...") if not os.path.isdir(TMP_DIR[args.dataset]): os.makedirs(TMP_DIR[args.dataset]) dataset = AmazonDataset(DATASET_DIR[args.dataset]) save_dataset(args.dataset, dataset) # Generate knowledge graph instance. # ========== BEGIN ========== # print("Create", args.dataset, "knowledge graph from dataset...") dataset = load_dataset(args.dataset) kg = KnowledgeGraph(dataset) kg.compute_degrees() save_kg(args.dataset, kg) # =========== END =========== # # Genereate train/test labels. # ========== BEGIN ========== # print("Generate", args.dataset, "train/test labels.") generate_labels(args.dataset, "train") generate_labels(args.dataset, "test")
def main(): parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default=BEAUTY, help='One of {BEAUTY, CELL, CD, CLOTH}.') args = parser.parse_args() # Create AmazonDataset instance for dataset. # ========== BEGIN ========== # print('Load', args.dataset, 'dataset from file...') if not os.path.isdir(TMP_DIR[args.dataset]): os.makedirs(TMP_DIR[args.dataset]) dataset = AmazonDataset(DATASET_DIR[args.dataset]) save_dataset(args.dataset, dataset) # Generate knowledge graph instance. # ========== BEGIN ========== # print('Create', args.dataset, 'knowledge graph from dataset...') dataset = load_dataset(args.dataset) kg = KnowledgeGraph(dataset) kg.compute_degrees() save_kg(args.dataset, kg) # =========== END =========== # # Generate train/test labels. # ========== BEGIN ========== # print('Generate', args.dataset, 'train/test labels.') generate_labels(args.dataset, 'train') generate_labels(args.dataset, 'test')