#!__*__coding:utf-8__*__ import os import pandas as pd ###################################### csv = r"data_draw_korea.csv" m = pd.read_csv(csv, encoding="utf-8", engine="python") print(m) import korea_showMap korea_showMap.drawKorea('면적', m, '광역시도', '행정구역', 'binary')
filename = r"Z:\상가업소정보_2017년_6월\상가업소_201706_01.csv" a1 = pd.read_csv(filename, engine="python") filename = r"Z:\상가업소정보_2017년_6월\상가업소_201706_02.csv" a2 = pd.read_csv(filename, engine="python") filename = r"Z:\상가업소정보_2017년_6월\상가업소_201706_03.csv" a3 = pd.read_csv(filename, engine="python") filename = r"Z:\상가업소정보_2017년_6월\상가업소_201706_04.csv" a4 = pd.read_csv(filename, engine="python") df = pd.merge([a1, a2, a3, a4]) #df = pd.read_csv(filename, engine="python") df[df.상호명.isnull()] = "상호없음" df_star = df[df.상호명.str.contains("스타벅스")] df_star.to_excel("스타벅스거르기2.xlsx") df_star = pd.read_excel("스타벅스거르기2.xlsx") df2 = df_star[["상호명", "시도명", "시군구명"]] gf = df2.groupby(["시도명", "시군구명"]).count() gf = gf.reset_index() gf.to_excel("스타벅스_상점수.xlsx") kf = pd.read_csv(r"Z:\20170923_7일차\data_draw_korea.csv", \ engine="python", encoding="utf-8") result = pd.merge(gf, kf, left_on=["시도명","시군구명"], \ right_on=["광역시도", "행정구역"], how="right") import korea_showMap korea_showMap.drawKorea('상호명', result, '광역시도', '행정구역', 'Reds')
starbucks = starbucks[["상호명", "시도명", "시군구명"]] starbucks = starbucks.groupby(["시도명", "시군구명"]).count() starbucks = starbucks.reset_index() ###################################### csv = r"data_draw_korea.csv" m = pd.read_csv(csv, encoding="utf-8", engine="python") print(m) yy = starbucks.merge(m, how='right', left_on=['시도명', '시군구명'], right_on=['광역시도', '행정구역']) print(yy) def convert_float(i): i = i.replace(",", "") if i.isdigit(): return float(i) else: return 0 yy.to_excel("cafebene_지역별_상점수_2017.xlsx") import korea_showMap korea_showMap.drawKorea("상호명", yy, "광역시도", "행정구역", "Reds")
m = pd.read_csv(csv, encoding="utf-8", engine="python") print(m) y = z1.merge(m, how='left', left_on='지역', right_on='shortName') print(y) y = y[y.x.notnull()] def convert_float(i): i = i.replace(",", "") if i.isdigit(): return float(i) else: return 0 y["절도2"] = y["절도"].apply(lambda x: convert_float(x)) y.to_excel("output.xlsx") import korea_showMap y.index = y.shortName y.reindex() #y..pivot(index='y', columns='x', values=targetData) for i in y.index: print(i) #drawKorea('소멸위기지역', pop, '광역시도', '시도', 'Reds') korea_showMap.drawKorea("절도2", y, "광역시도", "행정구역", "Reds")
starbucks = starbucks[["표준산업분류명", "시도명", "시군구명"]] starbucks = starbucks.groupby(["시도명", "시군구명"]).count() starbucks = starbucks.reset_index() ###################################### csv = r"data_draw_korea.csv" m = pd.read_csv(csv, encoding="utf-8", engine="python") print(m) dfb.apply yy = starbucks.merge(m, how='right', left_on=['시도명', '시군구명'], right_on=['광역시도', '행정구역']) print(yy) def convert_float(i): i = i.replace(",", "") if i.isdigit(): return float(i) else: return 0 yy.to_excel("chicken_지역별_상점수_2017.xlsx") import korea_showMap korea_showMap.drawKorea("표준산업분류명", yy, "광역시도", "행정구역", "Reds")
문제- 수원이 정말 치킨집이 하나도 없을까? 데이터를 분석해서 해결한다. """ import os import pandas as pd import korea_showMap ####################################################################### # 기본 csv 파일로 지도 만드는 샘플 ####################################################################### csv = r"data_draw_korea.csv" m = pd.read_csv(csv, encoding="utf-8", engine="python") print(m) korea_showMap.drawKorea('면적', m, '광역시도', '행정구역', 'OrRd') ####################################################################### # 기본 csv 파일로 지도 만드는 샘플 ####################################################################### datafiles = [ r"C:\Users\505\Downloads\상가업소_201609\상가업소_201609_01.csv", r"C:\Users\505\Downloads\상가업소_201609\상가업소_201609_02.csv", r"C:\Users\505\Downloads\상가업소_201609\상가업소_201609_03.csv", r"C:\Users\505\Downloads\상가업소_201609\상가업소_201609_04.csv" ] # if not os.path.isfile("korea_blockmap.xlsx"): df_list = []