示例#1
0
class TestVideoSequential:
    @pytest.mark.parametrize('shape', [(3, 4), (2, 3, 4), (2, 3, 5, 6),
                                       (2, 3, 4, 5, 6, 7)])
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    def test_exception(self, shape, data_format, device, dtype):
        aug_list = K.VideoSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1),
                                     data_format=data_format,
                                     same_on_frame=True)
        with pytest.raises(AssertionError):
            img = torch.randn(*shape, device=device, dtype=dtype)
            aug_list(img)

    @pytest.mark.parametrize(
        'augmentation',
        [
            K.RandomAffine(360, p=1.0),
            K.CenterCrop((3, 3), p=1.0),
            K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
            K.RandomCrop((5, 5), p=1.0),
            K.RandomErasing(p=1.0),
            K.RandomGrayscale(p=1.0),
            K.RandomHorizontalFlip(p=1.0),
            K.RandomVerticalFlip(p=1.0),
            K.RandomPerspective(p=1.0),
            K.RandomResizedCrop((5, 5), p=1.0),
            K.RandomRotation(360.0, p=1.0),
            K.RandomSolarize(p=1.0),
            K.RandomPosterize(p=1.0),
            K.RandomSharpness(p=1.0),
            K.RandomEqualize(p=1.0),
            K.RandomMotionBlur(3, 35.0, 0.5, p=1.0),
            K.Normalize(torch.tensor([0.5, 0.5, 0.5]),
                        torch.tensor([0.5, 0.5, 0.5]),
                        p=1.0),
            K.Denormalize(torch.tensor([0.5, 0.5, 0.5]),
                          torch.tensor([0.5, 0.5, 0.5]),
                          p=1.0),
        ],
    )
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    def test_augmentation(self, augmentation, data_format, device, dtype):
        input = torch.randint(255, (1, 3, 3, 5, 6), device=device,
                              dtype=dtype).repeat(2, 1, 1, 1, 1) / 255.0
        torch.manual_seed(21)
        aug_list = K.VideoSequential(augmentation,
                                     data_format=data_format,
                                     same_on_frame=True)
        reproducibility_test(input, aug_list)

    @pytest.mark.parametrize(
        'augmentations',
        [
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.RandomAffine(360, p=1.0)
            ],
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)
            ],
            [K.RandomAffine(360, p=1.0),
             kornia.color.BgrToRgb()],
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.0),
                K.RandomAffine(360, p=0.0)
            ],
            [K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.0)],
            [K.RandomAffine(360, p=0.0)],
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.RandomAffine(360, p=1.0),
                K.RandomMixUp(p=1.0)
            ],
        ],
    )
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    @pytest.mark.parametrize('random_apply',
                             [1, (1, 1), (1, ), 10, True, False])
    def test_same_on_frame(self, augmentations, data_format, random_apply,
                           device, dtype):
        aug_list = K.VideoSequential(*augmentations,
                                     data_format=data_format,
                                     same_on_frame=True,
                                     random_apply=random_apply)

        if data_format == 'BCTHW':
            input = torch.randn(2, 3, 1, 5, 6, device=device,
                                dtype=dtype).repeat(1, 1, 4, 1, 1)
            output = aug_list(input)
            if aug_list.return_label:
                output, _ = output
            assert (output[:, :, 0] == output[:, :, 1]).all()
            assert (output[:, :, 1] == output[:, :, 2]).all()
            assert (output[:, :, 2] == output[:, :, 3]).all()
        if data_format == 'BTCHW':
            input = torch.randn(2, 1, 3, 5, 6, device=device,
                                dtype=dtype).repeat(1, 4, 1, 1, 1)
            output = aug_list(input)
            if aug_list.return_label:
                output, _ = output
            assert (output[:, 0] == output[:, 1]).all()
            assert (output[:, 1] == output[:, 2]).all()
            assert (output[:, 2] == output[:, 3]).all()
        reproducibility_test(input, aug_list)

    @pytest.mark.parametrize(
        'augmentations',
        [
            [K.RandomAffine(360, p=1.0)],
            [K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)],
            [
                K.RandomAffine(360, p=0.0),
                K.ImageSequential(K.RandomAffine(360, p=0.0))
            ],
        ],
    )
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    def test_against_sequential(self, augmentations, data_format, device,
                                dtype):
        aug_list_1 = K.VideoSequential(*augmentations,
                                       data_format=data_format,
                                       same_on_frame=False)
        aug_list_2 = torch.nn.Sequential(*augmentations)

        if data_format == 'BCTHW':
            input = torch.randn(2, 3, 1, 5, 6, device=device,
                                dtype=dtype).repeat(1, 1, 4, 1, 1)
        if data_format == 'BTCHW':
            input = torch.randn(2, 1, 3, 5, 6, device=device,
                                dtype=dtype).repeat(1, 4, 1, 1, 1)

        torch.manual_seed(0)
        output_1 = aug_list_1(input)

        torch.manual_seed(0)
        if data_format == 'BCTHW':
            input = input.transpose(1, 2)
        output_2 = aug_list_2(input.reshape(-1, 3, 5, 6))
        output_2 = output_2.view(2, 4, 3, 5, 6)
        if data_format == 'BCTHW':
            output_2 = output_2.transpose(1, 2)
        assert (output_1 == output_2).all(), dict(aug_list_1._params)

    @pytest.mark.jit
    @pytest.mark.skip(reason="turn off due to Union Type")
    def test_jit(self, device, dtype):
        B, C, D, H, W = 2, 3, 5, 4, 4
        img = torch.ones(B, C, D, H, W, device=device, dtype=dtype)
        op = K.VideoSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1),
                               same_on_frame=True)
        op_jit = torch.jit.script(op)
        assert_close(op(img), op_jit(img))
    def __init__(
        self,
        net,
        image_size,
        hidden_layer=-2,
        project_hidden=True,
        project_dim=128,
        augment_both=True,
        use_nt_xent_loss=False,
        augment_fn=None,
        use_bilinear=False,
        use_momentum=False,
        momentum_value=0.999,
        key_encoder=None,
        temperature=0.1,
        batch_size=128,
    ):
        super().__init__()
        self.net = OutputHiddenLayer(net, layer=hidden_layer)

        DEFAULT_AUG = nn.Sequential(
            # RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            # augs.RandomGrayscale(p=0.2),
            augs.RandomHorizontalFlip(),
            augs.RandomVerticalFlip(),
            augs.RandomSolarize(),
            augs.RandomPosterize(),
            augs.RandomSharpness(),
            augs.RandomEqualize(),
            augs.RandomRotation(degrees=8.0),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size), p=0.1),
        )
        self.b = batch_size
        self.h = image_size
        self.w = image_size
        self.augment = default(augment_fn, DEFAULT_AUG)

        self.augment_both = augment_both

        self.temperature = temperature
        self.use_nt_xent_loss = use_nt_xent_loss

        self.project_hidden = project_hidden
        self.projection = None
        self.project_dim = project_dim

        self.use_bilinear = use_bilinear
        self.bilinear_w = None

        self.use_momentum = use_momentum
        self.ema_updater = EMA(momentum_value)
        self.key_encoder = key_encoder

        # for accumulating queries and keys across calls
        self.queries = None
        self.keys = None
        random_data = (
            (
                torch.randn(1, 3, image_size, image_size),
                torch.randn(1, 3, image_size, image_size),
                torch.randn(1, 3, image_size, image_size),
            ),
            torch.tensor([1]),
        )
        # send a mock image tensor to instantiate parameters
        self.forward(random_data)