示例#1
0
    def test_exception(self, device, dtype):
        with pytest.raises(ValueError):
            im = torch.rand(5, 5, device=device, dtype=dtype)
            K = torch.rand(3, 3, device=device, dtype=dtype)
            distCoeff = torch.rand(4, device=device, dtype=dtype)
            undistort_image(im, K, distCoeff)

        with pytest.raises(ValueError):
            im = torch.rand(3, 5, 5, device=device, dtype=dtype)
            K = torch.rand(4, 4, device=device, dtype=dtype)
            distCoeff = torch.rand(4, device=device, dtype=dtype)
            undistort_image(im, K, distCoeff)

        with pytest.raises(ValueError):
            im = torch.rand(3, 5, 5, device=device, dtype=dtype)
            K = torch.rand(3, 3, device=device, dtype=dtype)
            distCoeff = torch.rand(6, device=device, dtype=dtype)
            undistort_image(im, K, distCoeff)

        with pytest.raises(ValueError):
            im = torch.randint(0,
                               256, (3, 5, 5),
                               device=device,
                               dtype=torch.uint8)
            K = torch.rand(3, 3, device=device, dtype=dtype)
            distCoeff = torch.rand(4, device=device, dtype=dtype)
            undistort_image(im, K, distCoeff)

        with pytest.raises(ValueError):
            im = torch.rand(1, 1, 3, 5, 5, device=device, dtype=dtype)
            K = torch.rand(1, 3, 3, device=device, dtype=dtype)
            distCoeff = torch.rand(1, 4, device=device, dtype=dtype)
            undistort_image(im, K, distCoeff)
示例#2
0
    def test_opencv(self, device, dtype):
        im = torch.tensor(
            [[[
                [116, 75, 230, 5, 32],
                [9, 182, 97, 213, 3],
                [91, 10, 33, 141, 230],
                [229, 63, 221, 244, 61],
                [19, 137, 23, 59, 227],
            ]]],
            device=device,
            dtype=dtype,
        )

        K = torch.tensor([[2, 0, 2], [0, 2, 2], [0, 0, 1]],
                         device=device,
                         dtype=dtype)

        dist = torch.tensor([0.2290, 0.9565, 0.0083, 0.0475],
                            device=device,
                            dtype=dtype)

        # Expected output generated with OpenCV:
        # import cv2
        # imu_expected = cv2.undistort(np.uint8(im[0,0].numpy()), K.numpy(), dist.numpy())
        imu_expected = torch.tensor(
            [[[[0, 0, 0, 0, 0], [0, 124, 112, 82, 0], [0, 13, 33, 158, 0],
               [0, 108, 197, 150, 0], [0, 0, 0, 0, 0]]]],
            device=device,
            dtype=dtype,
        )

        imu = undistort_image(im / 255.0, K, dist)
        assert_close(imu, imu_expected / 255.0, rtol=1e-2, atol=1e-2)
示例#3
0
    def test_shape_minimum_dims(self, device, dtype):
        im = torch.rand(3, 5, 5, device=device, dtype=dtype)
        K = torch.rand(3, 3, device=device, dtype=dtype)
        distCoeff = torch.rand(4, device=device, dtype=dtype)

        imu = undistort_image(im, K, distCoeff)
        assert imu.shape == (3, 5, 5)
示例#4
0
    def test_shape_extra_dims(self, device, dtype):
        im = torch.rand(1, 1, 3, 5, 5, device=device,
                        dtype=dtype).tile(3, 2, 1, 1, 1)
        K = torch.rand(1, 1, 3, 3, device=device, dtype=dtype).tile(3, 2, 1, 1)
        distCoeff = torch.rand(1, 1, 4, device=device,
                               dtype=dtype).tile(3, 2, 1)

        imu = undistort_image(im, K, distCoeff)
        assert imu.shape == (3, 2, 3, 5, 5)
        torch.testing.assert_allclose(imu[0], imu[1])