示例#1
0
def get_affine_matrix2d(translations: torch.Tensor, center: torch.Tensor, scale: torch.Tensor, angle: torch.Tensor,
                        sx: Optional[torch.Tensor] = None, sy: Optional[torch.Tensor] = None) -> torch.Tensor:
    r"""Composes affine matrix Bx3x3 from the components
    Returns:
        torch.Tensor: params to be passed to the affine transformation.
    """
    transform: torch.Tensor = get_rotation_matrix2d(center, -angle, scale)
    transform[..., 2] += translations  # tx/ty
    # pad transform to get Bx3x3
    transform_h = convert_affinematrix_to_homography(transform)

    if sx is not None:
        x, y = torch.split(center, 1, dim=-1)
        x = x.view(-1)
        y = y.view(-1)
        sx_tan = torch.tan(sx)  # type: ignore
        sy_tan = torch.tan(sy)  # type: ignore
        zeros = torch.zeros_like(sx)  # type: ignore
        ones = torch.ones_like(sx)  # type: ignore
        shear_mat = torch.stack([ones, -sx_tan, sx_tan * x,  # type: ignore   # noqa: E241
                                 -sy_tan, ones + sx_tan * sy_tan, sy_tan * (-sx_tan * x + y)],  # noqa: E241
                                dim=-1).view(-1, 2, 3)
        shear_mat = convert_affinematrix_to_homography(shear_mat)
        transform_h = transform_h @ shear_mat
    return transform_h
示例#2
0
def invert_affine_transform(matrix: torch.Tensor) -> torch.Tensor:
    r"""Invert an affine transformation.

    The function computes an inverse affine transformation represented by
    2×3 matrix:

    .. math::
        \begin{bmatrix}
            a_{11} & a_{12} & b_{1} \\
            a_{21} & a_{22} & b_{2} \\
        \end{bmatrix}

    The result is also a 2×3 matrix of the same type as M.

    Args:
        matrix: original affine transform. The tensor must be
          in the shape of :math:`(B, 2, 3)`.

    Return:
        the reverse affine transform with shape :math:`(B, 2, 3)`.

    .. note::
        This function is often used in conjunction with :func:`warp_affine`.
    """
    if not isinstance(matrix, torch.Tensor):
        raise TypeError(f"Input matrix type is not a torch.Tensor. Got {type(matrix)}")

    if not (len(matrix.shape) == 3 and matrix.shape[-2:] == (2, 3)):
        raise ValueError(f"Input matrix must be a Bx2x3 tensor. Got {matrix.shape}")

    matrix_tmp: torch.Tensor = convert_affinematrix_to_homography(matrix)
    matrix_inv: torch.Tensor = torch.inverse(matrix_tmp)

    return matrix_inv[..., :2, :3]
示例#3
0
def invert_affine_transform(matrix: torch.Tensor) -> torch.Tensor:
    r"""Inverts an affine transformation.

    The function computes an inverse affine transformation represented by
    2×3 matrix:

    .. math::
        \begin{bmatrix}
            a_{11} & a_{12} & b_{1} \\
            a_{21} & a_{22} & b_{2} \\
        \end{bmatrix}

    The result is also a 2×3 matrix of the same type as M.

    Args:
        matrix (torch.Tensor): original affine transform. The tensor must be
          in the shape of (B, 2, 3).

    Return:
        torch.Tensor: the reverse affine transform.
    """
    if not torch.is_tensor(matrix):
        raise TypeError("Input matrix type is not a torch.Tensor. Got {}"
                        .format(type(matrix)))
    if not (len(matrix.shape) == 3 and matrix.shape[-2:] == (2, 3)):
        raise ValueError("Input matrix must be a Bx2x3 tensor. Got {}"
                         .format(matrix.shape))
    matrix_tmp: torch.Tensor = convert_affinematrix_to_homography(matrix)
    matrix_inv: torch.Tensor = torch.inverse(matrix_tmp)
    return matrix_inv[..., :2, :3]
示例#4
0
def get_affine_matrix2d(
    translations: torch.Tensor,
    center: torch.Tensor,
    scale: torch.Tensor,
    angle: torch.Tensor,
    sx: Optional[torch.Tensor] = None,
    sy: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    r"""Composes affine matrix from the components.

    Args:
        translations: tensor containing the translation vector with shape :math:`(B, 2)`.
        center: tensor containing the center vector with shape :math:`(B, 2)`.
        scale: tensor containing the scale factor with shape :math:`(B, 2)`.
        angle: tensor of angles in degrees :math:`(B)`.
        sx: tensor containing the shear factor in the x-direction with shape :math:`(B)`.
        sy: tensor containing the shear factor in the y-direction with shape :math:`(B)`.

    Returns:
        the affine transformation matrix :math:`(B, 3, 3)`.

    .. note::
        This function is often used in conjuntion with :func:`warp_affine`, :func:`warp_perspective`.
    """
    transform: torch.Tensor = get_rotation_matrix2d(center, -angle, scale)
    transform[..., 2] += translations  # tx/ty

    # pad transform to get Bx3x3
    transform_h = convert_affinematrix_to_homography(transform)

    if any(s is not None for s in [sx, sy]):
        shear_mat = get_shear_matrix2d(center, sx, sy)
        transform_h = transform_h @ shear_mat

    return transform_h
示例#5
0
文件: imgwarp.py 项目: djl11/kornia
def warp_affine(src: torch.Tensor, M: torch.Tensor,
                dsize: Tuple[int, int], flags: str = 'bilinear',
                padding_mode: str = 'zeros',
                align_corners: bool = False) -> torch.Tensor:
    r"""Applies an affine transformation to a tensor.

    The function warp_affine transforms the source tensor using
    the specified matrix:

    .. math::
        \text{dst}(x, y) = \text{src} \left( M_{11} x + M_{12} y + M_{13} ,
        M_{21} x + M_{22} y + M_{23} \right )

    Args:
        src (torch.Tensor): input tensor of shape :math:`(B, C, H, W)`.
        M (torch.Tensor): affine transformation of shape :math:`(B, 2, 3)`.
        dsize (Tuple[int, int]): size of the output image (height, width).
        mode (str): interpolation mode to calculate output values
          'bilinear' | 'nearest'. Default: 'bilinear'.
        padding_mode (str): padding mode for outside grid values
          'zeros' | 'border' | 'reflection'. Default: 'zeros'.
        align_corners (bool): mode for grid_generation. Default: False.

    Returns:
        torch.Tensor: the warped tensor with shape :math:`(B, C, H, W)`.

    .. note::
       See a working example `here <https://kornia.readthedocs.io/en/latest/
       tutorials/warp_affine.html>`__.
    """
    if not isinstance(src, torch.Tensor):
        raise TypeError("Input src type is not a torch.Tensor. Got {}"
                        .format(type(src)))

    if not isinstance(M, torch.Tensor):
        raise TypeError("Input M type is not a torch.Tensor. Got {}"
                        .format(type(M)))

    if not len(src.shape) == 4:
        raise ValueError("Input src must be a BxCxHxW tensor. Got {}"
                         .format(src.shape))

    if not (len(M.shape) == 3 or M.shape[-2:] == (2, 3)):
        raise ValueError("Input M must be a Bx2x3 tensor. Got {}"
                         .format(M.shape))
    B, C, H, W = src.size()
    dsize_src = (H, W)
    out_size = dsize
    # we generate a 3x3 transformation matrix from 2x3 affine
    M_3x3: torch.Tensor = convert_affinematrix_to_homography(M)
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography(
        M_3x3, dsize_src, out_size)
    src_norm_trans_dst_norm = torch.inverse(dst_norm_trans_src_norm)
    grid = F.affine_grid(src_norm_trans_dst_norm[:, :2, :],
                         [B, C, out_size[0], out_size[1]],
                         align_corners=align_corners)
    return F.grid_sample(src, grid,
                         align_corners=align_corners,
                         mode=flags,
                         padding_mode=padding_mode)
示例#6
0
def get_affine_matrix2d(translations: torch.Tensor,
                        center: torch.Tensor,
                        scale: torch.Tensor,
                        angle: torch.Tensor,
                        sx: Optional[torch.Tensor] = None,
                        sy: Optional[torch.Tensor] = None) -> torch.Tensor:
    r"""Composes affine matrix from the components.

    Args:
        translations (torch.Tensor): tensor containing the translation vector with shape :math:`(B, 2)`.
        center (torch.Tensor): tensor containing the center vector with shape :math:`(B, 2)`.
        scale (torch.Tensor): tensor containing the scale factor with shape :math:`(B, 2)`.
        sx (torch.Tensor, optional): tensor containing the shear factor in the x-direction with shape :math:`(B)`.
        sy (torch.Tensor, optional): tensor containing the shear factor in the y-direction with shape :math:`(B)`.

    Returns:
        torch.Tensor: the affine transformation matrix :math:`(B, 2, 3)`.
    """
    transform: torch.Tensor = get_rotation_matrix2d(center, -angle, scale)
    transform[..., 2] += translations  # tx/ty
    # pad transform to get Bx3x3
    transform_h = convert_affinematrix_to_homography(transform)

    if any([s is not None for s in [sx, sy]]):
        shear_mat = get_shear_matrix2d(center, sx, sy)
        transform_h = transform_h @ shear_mat
    return transform_h
示例#7
0
def get_shear_matrix2d(center: torch.Tensor,
                       sx: Optional[torch.Tensor] = None,
                       sy: Optional[torch.Tensor] = None):
    r"""Composes shear matrix Bx4x4 from the components.

    Note: Ordered shearing, shear x-axis then y-axis.

    .. math::
        \begin{bmatrix}
            1 & b \\
            a & ab + 1 \\
        \end{bmatrix}

    Args:
        center: shearing center coordinates of (x, y).
        sx: shearing degree along x axis.
        sy: shearing degree along y axis.

    Returns:
        params to be passed to the affine transformation with shape :math:`(B, 3, 3)`.

    Examples:
        >>> rng = torch.manual_seed(0)
        >>> sx = torch.randn(1)
        >>> sx
        tensor([1.5410])
        >>> center = torch.tensor([[0., 0.]])  # Bx2
        >>> get_shear_matrix2d(center, sx=sx)
        tensor([[[  1.0000, -33.5468,   0.0000],
                 [ -0.0000,   1.0000,   0.0000],
                 [  0.0000,   0.0000,   1.0000]]])

    .. note::
        This function is often used in conjuntion with :func:`warp_affine`, :func:`warp_perspective`.
    """
    sx = torch.tensor([0.0]).repeat(center.size(0)) if sx is None else sx
    sy = torch.tensor([0.0]).repeat(center.size(0)) if sy is None else sy

    x, y = torch.split(center, 1, dim=-1)
    x, y = x.view(-1), y.view(-1)

    sx_tan = torch.tan(sx)  # type: ignore
    sy_tan = torch.tan(sy)  # type: ignore
    ones = torch.ones_like(sx)  # type: ignore
    shear_mat = torch.stack(
        [
            ones,
            -sx_tan,
            sx_tan * y,  # type: ignore   # noqa: E241
            -sy_tan,
            ones + sx_tan * sy_tan,
            sy_tan * (sx_tan * y + x),  # noqa: E241
        ],
        dim=-1,
    ).view(-1, 2, 3)

    shear_mat = convert_affinematrix_to_homography(shear_mat)
    return shear_mat
示例#8
0
    def forward(self) -> torch.Tensor:
        r"""Single-batch similarity transform".

        Returns:
            Similarity with shape :math:`(1, 3, 3)`"""
        rot = self.scale * angle_to_rotation_matrix(self.rot)
        out = convert_affinematrix_to_homography(
            torch.cat([rot, self.shift], dim=2))
        return out
示例#9
0
def warp_affine(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int],
    mode: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: Optional[bool] = None,
) -> torch.Tensor:
    r"""Applies an affine transformation to a tensor.

    .. image:: _static/img/warp_affine.png

    The function warp_affine transforms the source tensor using
    the specified matrix:

    .. math::
        \text{dst}(x, y) = \text{src} \left( M_{11} x + M_{12} y + M_{13} ,
        M_{21} x + M_{22} y + M_{23} \right )

    Args:
        src: input tensor of shape :math:`(B, C, H, W)`.
        M: affine transformation of shape :math:`(B, 2, 3)`.
        dsize: size of the output image (height, width).
        mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``.
        padding_mode (str): padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners : mode for grid_generation.

    Returns:
        the warped tensor with shape :math:`(B, C, H, W)`.

    Example:
       >>> img = torch.rand(1, 4, 5, 6)
       >>> A = torch.eye(2, 3)[None]
       >>> out = warp_affine(img, A, (4, 2), align_corners=True)
       >>> print(out.shape)
       torch.Size([1, 4, 4, 2])

    .. note::
        This function is often used in conjuntion with :func:`get_rotation_matrix2d`,
        :func:`get_shear_matrix2d`, :func:`get_affine_matrix2d`, :func:`invert_affine_transform`.

    .. note::
       See a working example `here <https://kornia.readthedocs.io/en/latest/
       tutorials/warp_affine.html>`__.
    """
    if not isinstance(src, torch.Tensor):
        raise TypeError("Input src type is not a torch.Tensor. Got {}".format(
            type(src)))

    if not isinstance(M, torch.Tensor):
        raise TypeError("Input M type is not a torch.Tensor. Got {}".format(
            type(M)))

    if not len(src.shape) == 4:
        raise ValueError("Input src must be a BxCxHxW tensor. Got {}".format(
            src.shape))

    if not (len(M.shape) == 3 or M.shape[-2:] == (2, 3)):
        raise ValueError("Input M must be a Bx2x3 tensor. Got {}".format(
            M.shape))

    # TODO: remove the statement below in kornia v0.6
    if align_corners is None:
        message: str = (
            "The align_corners default value has been changed. By default now is set True "
            "in order to match cv2.warpAffine. In case you want to keep your previous "
            "behaviour set it to False. This warning will disappear in kornia > v0.6."
        )
        warnings.warn(message)
        # set default value for align corners
        align_corners = True

    B, C, H, W = src.size()

    # we generate a 3x3 transformation matrix from 2x3 affine
    M_3x3: torch.Tensor = convert_affinematrix_to_homography(M)
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography(
        M_3x3, (H, W), dsize)

    # src_norm_trans_dst_norm = torch.inverse(dst_norm_trans_src_norm)
    src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm)

    grid = F.affine_grid(src_norm_trans_dst_norm[:, :2, :],
                         [B, C, dsize[0], dsize[1]],
                         align_corners=align_corners)

    return F.grid_sample(src,
                         grid,
                         align_corners=align_corners,
                         mode=mode,
                         padding_mode=padding_mode)
示例#10
0
def warp_affine(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int],
    mode: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: bool = True,
) -> torch.Tensor:
    r"""Apply an affine transformation to a tensor.

    .. image:: _static/img/warp_affine.png

    The function warp_affine transforms the source tensor using
    the specified matrix:

    .. math::
        \text{dst}(x, y) = \text{src} \left( M_{11} x + M_{12} y + M_{13} ,
        M_{21} x + M_{22} y + M_{23} \right )

    Args:
        src: input tensor of shape :math:`(B, C, H, W)`.
        M: affine transformation of shape :math:`(B, 2, 3)`.
        dsize: size of the output image (height, width).
        mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``.
        padding_mode (str): padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners : mode for grid_generation.

    Returns:
        the warped tensor with shape :math:`(B, C, H, W)`.

    .. note::
        This function is often used in conjunction with :func:`get_rotation_matrix2d`,
        :func:`get_shear_matrix2d`, :func:`get_affine_matrix2d`, :func:`invert_affine_transform`.

    .. note::
       See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
       rotate_affine.html>`__.

    Example:
       >>> img = torch.rand(1, 4, 5, 6)
       >>> A = torch.eye(2, 3)[None]
       >>> out = warp_affine(img, A, (4, 2), align_corners=True)
       >>> print(out.shape)
       torch.Size([1, 4, 4, 2])
    """
    if not isinstance(src, torch.Tensor):
        raise TypeError(f"Input src type is not a torch.Tensor. Got {type(src)}")

    if not isinstance(M, torch.Tensor):
        raise TypeError(f"Input M type is not a torch.Tensor. Got {type(M)}")

    if not len(src.shape) == 4:
        raise ValueError(f"Input src must be a BxCxHxW tensor. Got {src.shape}")

    if not (len(M.shape) == 3 or M.shape[-2:] == (2, 3)):
        raise ValueError(f"Input M must be a Bx2x3 tensor. Got {M.shape}")

    B, C, H, W = src.size()

    # we generate a 3x3 transformation matrix from 2x3 affine
    M_3x3: torch.Tensor = convert_affinematrix_to_homography(M)
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography(M_3x3, (H, W), dsize)

    # src_norm_trans_dst_norm = torch.inverse(dst_norm_trans_src_norm)
    src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm)

    grid = F.affine_grid(src_norm_trans_dst_norm[:, :2, :], [B, C, dsize[0], dsize[1]], align_corners=align_corners)

    return F.grid_sample(src, grid, align_corners=align_corners, mode=mode, padding_mode=padding_mode)