示例#1
0
def spatial_soft_argmax2d(
        input: torch.Tensor,
        temperature: torch.Tensor = torch.tensor(1.0),
        normalized_coordinates: bool = True,
        eps: float = 1e-8) -> torch.Tensor:
    r"""Function that computes the Spatial Soft-Argmax 2D
    of a given input heatmap.

    Returns the index of the maximum 2d coordinates of the give map.
    The output order is x-coord and y-coord.

    Arguments:
        temperature (torch.Tensor): factor to apply to input. Default is 1.
        normalized_coordinates (bool): whether to return the
          coordinates normalized in the range of [-1, 1]. Otherwise,
          it will return the coordinates in the range of the input shape.
          Default is True.
        eps (float): small value to avoid zero division. Default is 1e-8.

    Shape:
        - Input: :math:`(B, N, H, W)`
        - Output: :math:`(B, N, 2)`

    Examples:
        >>> input = torch.tensor([[[
            [0., 0., 0.],
            [0., 10., 0.],
            [0., 0., 0.]]]])
        >>> coords = kornia.spatial_soft_argmax2d(input, False)
        tensor([[[1.0000, 1.0000]]])
    """
    input_soft: torch.Tensor = dsnt.spatial_softmax2d(input, temperature)
    output: torch.Tensor = dsnt.spatial_expectation2d(input_soft, normalized_coordinates)
    return output
示例#2
0
def spatial_soft_argmax2d(
    input: torch.Tensor,
    temperature: torch.Tensor = torch.tensor(1.0),
    normalized_coordinates: bool = True,
    eps: float = 1e-8,
) -> torch.Tensor:
    r"""Function that computes the Spatial Soft-Argmax 2D of a given input heatmap.

    Args:
        input: the given heatmap with shape :math:`(B, N, H, W)`.
        temperature: factor to apply to input.
        normalized_coordinates: whether to return the coordinates normalized in the range of :math:`[-1, 1]`.
            Otherwise, it will return the coordinates in the range of the input shape.
        eps: small value to avoid zero division.

    Returns:
        the index of the maximum 2d coordinates of the give map :math:`(B, N, 2)`.
        The output order is x-coord and y-coord.

    Examples:
        >>> input = torch.tensor([[[
        ... [0., 0., 0.],
        ... [0., 10., 0.],
        ... [0., 0., 0.]]]])
        >>> spatial_soft_argmax2d(input, normalized_coordinates=False)
        tensor([[[1.0000, 1.0000]]])
    """
    input_soft: torch.Tensor = dsnt.spatial_softmax2d(input, temperature)
    output: torch.Tensor = dsnt.spatial_expectation2d(input_soft, normalized_coordinates)
    return output
 def forward(self, inputs: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
     """NCHW -> NC2."""
     # Convert logits to probabilities.
     # TODO(ycho): Consider if this is preferable to elementwise sigmoid.
     prob = spatial_softmax2d(inputs, temperature=self.temperature)
     kpts = spatial_expectation2d(prob, normalized_coordinates=True)
     return (prob, kpts)