def train(config: DictConfig) -> nn.DataParallel: random.seed(config.train.seed) torch.manual_seed(config.train.seed) torch.cuda.manual_seed_all(config.train.seed) device = check_envirionment(config.train.use_cuda) if hasattr(config.train, "num_threads") and int(config.train.num_threads) > 0: torch.set_num_threads(config.train.num_threads) vocab = KsponSpeechVocabulary( f'/home/seungmin/dmount/KoSpeech/data/vocab/aihub_{config.train.output_unit}_vocabs.csv', output_unit=config.train.output_unit, ) if not config.train.resume: epoch_time_step, trainset_list, validset = split_dataset( config, config.train.transcripts_path, vocab) model = build_model(config, vocab, device) optimizer = get_optimizer(model, config) lr_scheduler = get_lr_scheduler(config, optimizer, epoch_time_step) optimizer = Optimizer(optimizer, lr_scheduler, config.train.total_steps, config.train.max_grad_norm) criterion = get_criterion(config, vocab) else: trainset_list = None validset = None model = None optimizer = None epoch_time_step = None criterion = get_criterion(config, vocab) trainer = SupervisedTrainer( optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=config.train.num_workers, device=device, teacher_forcing_step=config.model.teacher_forcing_step, min_teacher_forcing_ratio=config.model.min_teacher_forcing_ratio, print_every=config.train.print_every, save_result_every=config.train.save_result_every, checkpoint_every=config.train.checkpoint_every, architecture=config.model.architecture, vocab=vocab, joint_ctc_attention=config.model.joint_ctc_attention, ) model = trainer.train( model=model, batch_size=config.train.batch_size, epoch_time_step=epoch_time_step, num_epochs=config.train.num_epochs, teacher_forcing_ratio=config.model.teacher_forcing_ratio, resume=config.train.resume, ) return model
def train(opt): random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed_all(opt.seed) device = check_envirionment(opt.use_cuda) if not opt.resume: audio_paths, script_paths = load_data_list(opt.data_list_path, opt.dataset_path) epoch_time_step, trainset_list, validset = split_dataset(opt, audio_paths, script_paths) model = build_model(opt, device) optimizer = optim.Adam(model.module.parameters(), lr=opt.init_lr, weight_decay=opt.weight_decay) if opt.rampup_period > 0: scheduler = RampUpLR(optimizer, opt.init_lr, opt.high_plateau_lr, opt.rampup_period) optimizer = Optimizer(optimizer, scheduler, opt.rampup_period, opt.max_grad_norm) else: optimizer = Optimizer(optimizer, None, 0, opt.max_grad_norm) criterion = LabelSmoothedCrossEntropyLoss( num_classes=len(char2id), ignore_index=PAD_token, smoothing=opt.label_smoothing, dim=-1, reduction=opt.reduction, architecture=opt.architecture ).to(device) else: trainset_list = None validset = None model = None optimizer = None criterion = LabelSmoothedCrossEntropyLoss( num_classes=len(char2id), ignore_index=PAD_token, smoothing=opt.label_smoothing, dim=-1, reduction=opt.reduction, architecture=opt.architecture ).to(device) epoch_time_step = None trainer = SupervisedTrainer( optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=opt.num_workers, high_plateau_lr=opt.high_plateau_lr, low_plateau_lr=opt.low_plateau_lr, decay_threshold=opt.decay_threshold, exp_decay_period=opt.exp_decay_period, device=device, teacher_forcing_step=opt.teacher_forcing_step, min_teacher_forcing_ratio=opt.min_teacher_forcing_ratio, print_every=opt.print_every, save_result_every=opt.save_result_every, checkpoint_every=opt.checkpoint_every, architecture=opt.architecture ) model = trainer.train( model=model, batch_size=opt.batch_size, epoch_time_step=epoch_time_step, num_epochs=opt.num_epochs, teacher_forcing_ratio=opt.teacher_forcing_ratio, resume=opt.resume ) return model
def train(opt): random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed_all(opt.seed) device = check_envirionment(opt.use_cuda) audio_paths, script_paths = load_data_list(opt.data_list_path, opt.dataset_path) epoch_time_step, trainset_list, validset = split_dataset( opt, audio_paths, script_paths) model = build_ensemble(['model_path1', 'model_path2', 'model_path3'], opt.ensemble_method, device) optimizer = optim.Adam(model.module.parameters(), lr=opt.init_lr) optimizer = Optimizer(optimizer, None, 0, opt.max_grad_norm) criterion = nn.NLLLoss(reduction='sum', ignore_index=PAD_token).to(device) trainer = SupervisedTrainer( optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=opt.num_workers, high_plateau_lr=opt.high_plateau_lr, low_plateau_lr=opt.low_plateau_lr, decay_threshold=opt.decay_threshold, exp_decay_period=opt.exp_decay_period, device=device, teacher_forcing_step=opt.teacher_forcing_step, min_teacher_forcing_ratio=opt.min_teacher_forcing_ratio, print_every=opt.print_every, save_result_every=opt.save_result_every, checkpoint_every=opt.checkpoint_every) model = trainer.train(model=model, batch_size=opt.batch_size, epoch_time_step=epoch_time_step, num_epochs=opt.num_epochs, teacher_forcing_ratio=opt.teacher_forcing_ratio, resume=opt.resume) Checkpoint(model, model.optimizer, model.criterion, model.trainset_list, model.validset, opt.num_epochs).save()
def train(config: DictConfig) -> nn.DataParallel: random.seed(config.train.seed) torch.manual_seed(config.train.seed) torch.cuda.manual_seed_all(config.train.seed) device = check_envirionment(config.train.use_cuda) if config.train.dataset == 'kspon': if config.train.output_unit == 'subword': vocab = KsponSpeechVocabulary( vocab_path=KSPONSPEECH_VOCAB_PATH, output_unit=config.train.output_unit, sp_model_path=KSPONSPEECH_SP_MODEL_PATH, ) else: vocab = KsponSpeechVocabulary( f'../../../data/vocab/aihub_{config.train.output_unit}_vocabs.csv', output_unit=config.train.output_unit, ) elif config.train.dataset == 'libri': vocab = LibriSpeechVocabulary(LIBRISPEECH_VOCAB_PATH, LIBRISPEECH_TOKENIZER_PATH) else: raise ValueError("Unsupported Dataset : {0}".format(config.train.dataset)) if not config.train.resume: epoch_time_step, trainset_list, validset = split_dataset(config, config.train.transcripts_path, vocab) model = build_model(config, vocab, device) optimizer = get_optimizer(model, config) lr_scheduler = get_lr_scheduler(config, optimizer, epoch_time_step) optimizer = Optimizer(optimizer, lr_scheduler, config.train.warmup_steps, config.train.max_grad_norm) criterion = get_criterion(config, vocab) else: trainset_list = None validset = None model = None optimizer = None epoch_time_step = None criterion = get_criterion(config, vocab) trainer = SupervisedTrainer( optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=config.train.num_workers, device=device, teacher_forcing_step=config.model.teacher_forcing_step, min_teacher_forcing_ratio=config.model.min_teacher_forcing_ratio, print_every=config.train.print_every, save_result_every=config.train.save_result_every, checkpoint_every=config.train.checkpoint_every, architecture=config.model.architecture, vocab=vocab, joint_ctc_attention=config.model.joint_ctc_attention, ) model = trainer.train( model=model, batch_size=config.train.batch_size, epoch_time_step=epoch_time_step, num_epochs=config.train.num_epochs, teacher_forcing_ratio=config.model.teacher_forcing_ratio, resume=config.train.resume, ) return model
def train(config: DictConfig): random.seed(config.train.seed) torch.manual_seed(config.train.seed) torch.cuda.manual_seed_all(config.train.seed) device = check_envirionment(config.train.use_cuda) if config.train.dataset == 'kspon': if config.train.output_unit == 'subword': vocab = KsponSpeechVocabulary( vocab_path='../../../data/vocab/kspon_sentencepiece.vocab', output_unit=config.train.output_unit, sp_model_path='../../../data/vocab/kspon_sentencepiece.model', ) else: vocab = KsponSpeechVocabulary( f'../../../data/vocab/aihub_{config.train.output_unit}_vocabs.csv', output_unit=config.train.output_unit) elif config.train.dataset == 'libri': vocab = LibriSpeechVocabulary('../../../data/vocab/tokenizer.vocab', '../../../data/vocab/tokenizer.model') else: raise ValueError("Unsupported Dataset : {0}".format( config.train.dataset)) if not config.train.resume: epoch_time_step, trainset_list, validset = split_dataset( config, config.train.transcripts_path, vocab) model = build_model(config, vocab, device) optimizer = get_optimizer(model, config) lr_scheduler = TriStageLRScheduler( optimizer=optimizer, init_lr=config.train.init_lr, peak_lr=config.train.peak_lr, final_lr=config.train.final_lr, init_lr_scale=config.train.init_lr_scale, final_lr_scale=config.train.final_lr_scale, warmup_steps=config.train.warmup_steps, total_steps=int(config.train.num_epochs * epoch_time_step)) optimizer = Optimizer(optimizer, lr_scheduler, config.train.warmup_steps, config.train.max_grad_norm) criterion = get_criterion(config, vocab) else: trainset_list = None validset = None model = None optimizer = None epoch_time_step = None criterion = get_criterion(config, vocab) trainer = SupervisedTrainer( optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=config.train.num_workers, device=device, teacher_forcing_step=config.model.teacher_forcing_step, min_teacher_forcing_ratio=config.model.min_teacher_forcing_ratio, print_every=config.train.print_every, save_result_every=config.train.save_result_every, checkpoint_every=config.train.checkpoint_every, architecture=config.model.architecture, vocab=vocab, joint_ctc_attention=config.model.joint_ctc_attention, ) model = trainer.train( model=model, batch_size=config.train.batch_size, epoch_time_step=epoch_time_step, num_epochs=config.train.num_epochs, teacher_forcing_ratio=config.model.teacher_forcing_ratio, resume=config.train.resume, ) return model
def train(opt): random.seed(opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed_all(opt.seed) device = check_envirionment(opt.use_cuda) if opt.dataset == 'kspon': if opt.output_unit == 'subword': vocab = KsponSpeechVocabulary( vocab_path='../data/vocab/kspon_sentencepiece.vocab', output_unit=opt.output_unit, sp_model_path='../data/vocab/kspon_sentencepiece.model') else: vocab = KsponSpeechVocabulary( f'../data/vocab/aihub_{opt.output_unit}_vocabs.csv', output_unit=opt.output_unit) elif opt.dataset == 'libri': vocab = LibriSpeechVocabulary('../data/vocab/tokenizer.vocab', '../data/vocab/tokenizer.model') else: raise ValueError("Unsupported Dataset : {0}".format(opt.dataset)) if not opt.resume: epoch_time_step, trainset_list, validset = split_dataset( opt, opt.transcripts_path, vocab) model = build_model(opt, vocab, device) if opt.optimizer.lower() == 'adam': optimizer = optim.Adam(model.module.parameters(), lr=opt.init_lr, weight_decay=opt.weight_decay) elif opt.optimizer.lower() == 'radam': optimizer = RAdam(model.module.parameters(), lr=opt.init_lr, weight_decay=opt.weight_decay) elif opt.optimizer.lower() == 'adamp': optimizer = AdamP(model.module.parameters(), lr=opt.init_lr, weight_decay=opt.weight_decay) elif opt.optimizer.lower() == 'adadelta': optimizer = optim.Adadelta(model.module.parameters(), lr=opt.init_lr, weight_decay=opt.weight_decay) elif opt.optimizer.lower() == 'adagrad': optimizer = optim.Adagrad(model.module.parameters(), lr=opt.init_lr, weight_decay=opt.weight_decay) else: raise ValueError( f"Unsupported Optimizer, Supported Optimizer : Adam, RAdam, Adadelta, Adagrad" ) lr_scheduler = TriStageLRScheduler(optimizer=optimizer, init_lr=opt.init_lr, peak_lr=opt.peak_lr, final_lr=opt.final_lr, init_lr_scale=opt.init_lr_scale, final_lr_scale=opt.final_lr_scale, warmup_steps=opt.warmup_steps, total_steps=int(opt.num_epochs * epoch_time_step)) optimizer = Optimizer(optimizer, lr_scheduler, opt.warmup_steps, opt.max_grad_norm) if opt.architecture == 'deepspeech2': criterion = nn.CTCLoss(blank=vocab.blank_id, reduction=opt.reduction).to(device) else: criterion = LabelSmoothedCrossEntropyLoss( num_classes=len(vocab), ignore_index=vocab.pad_id, smoothing=opt.label_smoothing, dim=-1, reduction=opt.reduction, architecture=opt.architecture).to(device) else: trainset_list = None validset = None model = None optimizer = None criterion = LabelSmoothedCrossEntropyLoss( num_classes=len(vocab), ignore_index=vocab.pad_id, smoothing=opt.label_smoothing, dim=-1, reduction=opt.reduction, architecture=opt.architecture).to(device) epoch_time_step = None trainer = SupervisedTrainer( optimizer=optimizer, criterion=criterion, trainset_list=trainset_list, validset=validset, num_workers=opt.num_workers, device=device, teacher_forcing_step=opt.teacher_forcing_step, min_teacher_forcing_ratio=opt.min_teacher_forcing_ratio, print_every=opt.print_every, save_result_every=opt.save_result_every, checkpoint_every=opt.checkpoint_every, architecture=opt.architecture, vocab=vocab) model = trainer.train(model=model, batch_size=opt.batch_size, epoch_time_step=epoch_time_step, num_epochs=opt.num_epochs, teacher_forcing_ratio=opt.teacher_forcing_ratio, resume=opt.resume) return model