def test_trainer_without_optimizer(self, simple_model, loss): """ Tests if we can compile a Executor instance without an optimizer. """ simple_model.parse(None) simple_model.build() trainer = Executor(model=simple_model, loss=loss) trainer.compile()
def test_evaluator(self, simple_model): """ Tests if we can compile an Executor instance. """ simple_model.parse(None) simple_model.build() evaluator = Executor(model=simple_model) evaluator.compile()
def test_evaluator(self, simple_model): """ Tests if we can compile an Executor instance. """ simple_model.parse(None) simple_model.build() evaluator = Executor( model=simple_model ) evaluator.compile()
def test_uber_test(self, uber_model, uber_data, jinja_engine, loss): """ Tests that we can compile and test a diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor(model=uber_model, loss=loss) trainer.compile() trainer.test(providers={'default': uber_data})
def test_uber_train(self, uber_model, uber_data, jinja_engine, loss, optimizer): """ Tests that we can compile and train a diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor(model=uber_model, loss=loss, optimizer=optimizer) trainer.compile() trainer.train(provider=uber_data, stop_when={'epochs': 1})
def test_trainer_without_optimizer(self, simple_model, loss): """ Tests if we can compile a Executor instance without an optimizer. """ simple_model.parse(None) simple_model.build() trainer = Executor( model=simple_model, loss=loss ) trainer.compile()
def test_uber_test(self, uber_model, uber_data, jinja_engine, loss): """ Tests that we can compile and test a diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor( model=uber_model, loss=loss ) trainer.compile() trainer.test(providers={'default' : uber_data})
def test_uber_train(self, uber_model, uber_data, jinja_engine, loss, optimizer): """ Tests that we can compile and train a diverse model. """ if uber_model.get_backend().get_name() == 'keras' and \ uber_model.get_backend().keras_version() == 2 and \ uber_model.get_backend().get_toolchain() == 'tensorflow' and \ sys.version_info < (3, 5): pytest.skip('Occassional SIGSEGV') uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor(model=uber_model, loss=loss, optimizer=optimizer) trainer.compile() trainer.train(provider=uber_data, stop_when={'epochs': 1})
def test_uber_train(self, uber_model, uber_data, jinja_engine, loss, optimizer): """ Tests that we can compile and train a diverse model. """ if uber_model.get_backend().get_name() == 'keras' and \ uber_model.get_backend().keras_version() == 2 and \ uber_model.get_backend().get_toolchain() == 'tensorflow' and \ sys.version_info < (3, 5): pytest.skip('Occassional SIGSEGV') uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor( model=uber_model, loss=loss, optimizer=optimizer ) trainer.compile() trainer.train(provider=uber_data, stop_when={'epochs' : 1})