def test_get_scene_indices_ego(scene_idx: int, zarr_dataset: ChunkedDataset,
                               dmg: LocalDataManager, cfg: dict) -> None:
    cfg["raster_params"]["map_type"] = "box_debug"
    rasterizer = build_rasterizer(cfg, dmg)
    dataset = EgoDataset(cfg, zarr_dataset, rasterizer)

    scene_indices = dataset.get_scene_indices(scene_idx)
    frame_slice = get_frames_slice_from_scenes(zarr_dataset.scenes[scene_idx])
    assert scene_indices[0] == frame_slice.start
    assert scene_indices[-1] == frame_slice.stop - 1
示例#2
0
class L5Env(gym.Env):
    """Custom Environment of L5 Kit that can be registered in OpenAI Gym.

    :param env_config_path: path to the L5Kit environment configuration file
    :param dmg: local data manager object
    :param simulation_cfg: configuration of the L5Kit closed loop simulator
    :param train: flag to determine whether to use train or validation dataset
    :param reward: calculates the reward for the gym environment
    :param cle: flag to enable close loop environment updates
    :param rescale_action: flag to rescale the model action back to the un-normalized action space
    :param use_kinematic: flag to use the kinematic model
    :param kin_model: the kinematic model
    :param return_info: flag to return info when a episode ends
    :param randomize_start: flag to randomize the start frame of episode
    """
    def __init__(self,
                 env_config_path: Optional[str] = None,
                 dmg: Optional[LocalDataManager] = None,
                 sim_cfg: Optional[SimulationConfig] = None,
                 train: bool = True,
                 reward: Optional[Reward] = None,
                 cle: bool = True,
                 rescale_action: bool = True,
                 use_kinematic: bool = False,
                 kin_model: Optional[KinematicModel] = None,
                 reset_scene_id: Optional[int] = None,
                 return_info: bool = False,
                 randomize_start: bool = True) -> None:
        """Constructor method
        """
        super(L5Env, self).__init__()

        # Required to register environment
        if env_config_path is None:
            return

        # env config
        dm = dmg if dmg is not None else LocalDataManager(None)
        cfg = load_config_data(env_config_path)
        self.step_time = cfg["model_params"]["step_time"]

        # rasterisation
        rasterizer = build_rasterizer(cfg, dm)
        raster_size = cfg["raster_params"]["raster_size"][0]
        n_channels = rasterizer.num_channels()

        # load dataset of environment
        self.train = train
        self.overfit = cfg["gym_params"]["overfit"]
        self.randomize_start_frame = randomize_start
        if self.train or self.overfit:
            loader_key = cfg["train_data_loader"]["key"]
        else:
            loader_key = cfg["val_data_loader"]["key"]
        dataset_zarr = ChunkedDataset(dm.require(loader_key)).open()
        self.dataset = EgoDataset(cfg, dataset_zarr, rasterizer)

        # Define action and observation space
        # Continuous Action Space: gym.spaces.Box (X, Y, Yaw * number of future states)
        self.action_space = spaces.Box(low=-1, high=1, shape=(3, ))

        # Observation Space: gym.spaces.Dict (image: [n_channels, raster_size, raster_size])
        obs_shape = (n_channels, raster_size, raster_size)
        self.observation_space = spaces.Dict({
            'image':
            spaces.Box(low=0, high=1, shape=obs_shape, dtype=np.float32)
        })

        # Simulator Config within Gym
        self.sim_cfg = sim_cfg if sim_cfg is not None else SimulationConfigGym(
        )
        self.simulator = ClosedLoopSimulator(self.sim_cfg,
                                             self.dataset,
                                             device=torch.device("cpu"),
                                             mode=ClosedLoopSimulatorModes.GYM)

        self.reward = reward if reward is not None else L2DisplacementYawReward(
        )

        self.max_scene_id = cfg["gym_params"]["max_scene_id"]
        if not self.train:
            self.max_scene_id = cfg["gym_params"]["max_val_scene_id"]
            self.randomize_start_frame = False
        if self.overfit:
            self.overfit_scene_id = cfg["gym_params"]["overfit_id"]
            self.randomize_start_frame = False

        self.cle = cle
        self.rescale_action = rescale_action
        self.use_kinematic = use_kinematic

        if self.use_kinematic:
            self.kin_model = kin_model if kin_model is not None else UnicycleModel(
            )
            self.kin_rescale = self._get_kin_rescale_params()
        else:
            self.non_kin_rescale = self._get_non_kin_rescale_params()

        # If not None, reset_scene_id is the scene_id that will be rolled out when reset is called
        self.reset_scene_id = reset_scene_id
        if self.overfit:
            self.reset_scene_id = self.overfit_scene_id

        # flag to decide whether to return any info at end of episode
        # helps to limit the IPC
        self.return_info = return_info

        self.seed()

    def seed(self, seed: int = None) -> List[int]:
        """Generate the random seed.

        :param seed: the seed integer
        :return: the output random seed
        """
        self.np_random, seed = seeding.np_random(seed)
        # TODO : add a torch seed for future
        return [seed]

    def set_reset_id(self, reset_id: int = None) -> None:
        """Set the reset_id to unroll from specific scene_id.
        Useful during deterministic evaluation.

        :param reset_id: the scene_id to unroll
        """
        self.reset_scene_id = reset_id

    def reset(self) -> Dict[str, np.ndarray]:
        """ Resets the environment and outputs first frame of a new scene sample.

        :return: the observation of first frame of sampled scene index
        """
        # Define in / outs for new episode scene
        self.agents_ins_outs: DefaultDict[
            int, List[List[UnrollInputOutput]]] = defaultdict(list)
        self.ego_ins_outs: DefaultDict[
            int, List[UnrollInputOutput]] = defaultdict(list)

        # Select Scene ID
        self.scene_index = self.np_random.randint(0, self.max_scene_id)
        if self.reset_scene_id is not None:
            self.scene_index = min(self.reset_scene_id, self.max_scene_id - 1)
            self.reset_scene_id += 1

        # Select Frame ID (within bounds of the scene)
        if self.randomize_start_frame:
            scene_length = len(self.dataset.get_scene_indices(
                self.scene_index))
            self.eps_length = self.sim_cfg.num_simulation_steps or scene_length
            end_frame = scene_length - self.eps_length
            self.sim_cfg.start_frame_index = self.np_random.randint(
                0, end_frame + 1)

        # Prepare episode scene
        self.sim_dataset = SimulationDataset.from_dataset_indices(
            self.dataset, [self.scene_index], self.sim_cfg)

        # Reset CLE evaluator
        self.reward.reset()

        # Output first observation
        self.frame_index = 1  # Frame_index 1 has access to the true ego speed
        ego_input = self.sim_dataset.rasterise_frame_batch(self.frame_index)
        self.ego_input_dict = {
            k: np.expand_dims(v, axis=0)
            for k, v in ego_input[0].items()
        }

        # Reset Kinematic model
        if self.use_kinematic:
            init_kin_state = np.array(
                [0.0, 0.0, 0.0, self.step_time * ego_input[0]['curr_speed']])
            self.kin_model.reset(init_kin_state)

        # Only output the image attribute
        obs = {'image': ego_input[0]["image"]}
        return obs

    def step(self, action: np.ndarray) -> GymStepOutput:
        """Inputs the action, updates the environment state and outputs the next frame.

        :param action: the action to perform on current state/frame
        :return: the namedTuple comprising the (next observation, reward, done, info)
            based on the current action
        """
        frame_index = self.frame_index
        next_frame_index = frame_index + 1
        episode_over = next_frame_index == (len(self.sim_dataset) - 1)

        # EGO
        if not self.sim_cfg.use_ego_gt:
            action = self._rescale_action(action)
            ego_output = self._convert_action_to_ego_output(action)
            self.ego_output_dict = ego_output

            if self.cle:
                # In closed loop training, the raster is updated according to predicted ego positions.
                self.simulator.update_ego(self.sim_dataset, next_frame_index,
                                          self.ego_input_dict,
                                          self.ego_output_dict)

            ego_frame_in_out = self.simulator.get_ego_in_out(
                self.ego_input_dict, self.ego_output_dict,
                self.simulator.keys_to_exclude)
            self.ego_ins_outs[self.scene_index].append(
                ego_frame_in_out[self.scene_index])

        # generate simulated_outputs
        simulated_outputs = SimulationOutputCLE(self.scene_index,
                                                self.sim_dataset,
                                                self.ego_ins_outs,
                                                self.agents_ins_outs)

        # reward calculation
        reward = self.reward.get_reward(self.frame_index, [simulated_outputs])

        # done is True when episode ends
        done = episode_over

        # Optionally we can pass additional info
        # We are using "info" to output rewards and simulated outputs (during evaluation)
        info: Dict[str, Any]
        info = {
            'reward_tot': reward["total"],
            'reward_dist': reward["distance"],
            'reward_yaw': reward["yaw"]
        }
        if done and self.return_info:
            info = {
                "sim_outs": self.get_episode_outputs(),
                "reward_tot": reward["total"],
                "reward_dist": reward["distance"],
                "reward_yaw": reward["yaw"]
            }

        # Get next obs
        self.frame_index += 1
        obs = self._get_obs(self.frame_index, episode_over)

        # return obs, reward, done, info
        return GymStepOutput(obs, reward["total"], done, info)

    def get_episode_outputs(self) -> List[EpisodeOutputGym]:
        """Generate and return the outputs at the end of the episode.

        :return: List of episode outputs
        """
        episode_outputs = [
            EpisodeOutputGym(self.scene_index, self.sim_dataset,
                             self.ego_ins_outs, self.agents_ins_outs)
        ]
        return episode_outputs

    def render(self) -> None:
        """Render a frame during the simulation
        """
        raise NotImplementedError

    def _get_obs(self, frame_index: int,
                 episode_over: bool) -> Dict[str, np.ndarray]:
        """Get the observation corresponding to a given frame index in the scene.

        :param frame_index: the index of the frame which provides the observation
        :param episode_over: flag to determine if the episode is over
        :return: the observation corresponding to the frame index
        """
        if episode_over:
            frame_index = 0  # Dummy final obs (when episode_over)

        ego_input = self.sim_dataset.rasterise_frame_batch(frame_index)
        self.ego_input_dict = {
            k: np.expand_dims(v, axis=0)
            for k, v in ego_input[0].items()
        }
        obs = {"image": ego_input[0]["image"]}
        return obs

    def _rescale_action(self, action: np.ndarray) -> np.ndarray:
        """Rescale the input action back to the un-normalized action space. PPO and related algorithms work well
        with normalized action spaces. The environment receives a normalized action and we un-normalize it back to
        the original action space for environment updates.

        :param action: the normalized action
        :return: the unnormalized action
        """
        if self.rescale_action:
            if self.use_kinematic:
                action[0] = self.kin_rescale.steer_scale * action[0]
                action[1] = self.kin_rescale.acc_scale * action[1]
            else:
                action[
                    0] = self.non_kin_rescale.x_mu + self.non_kin_rescale.x_scale * action[
                        0]
                action[
                    1] = self.non_kin_rescale.y_mu + self.non_kin_rescale.y_scale * action[
                        1]
                action[
                    2] = self.non_kin_rescale.yaw_mu + self.non_kin_rescale.yaw_scale * action[
                        2]
        return action

    def _get_kin_rescale_params(self) -> KinematicActionRescaleParams:
        """Determine the action un-normalization parameters for the kinematic model
        from the current dataset in the L5Kit environment.

        :return: Tuple of the action un-normalization parameters for kinematic model
        """
        global MAX_ACC, MAX_STEER
        return KinematicActionRescaleParams(MAX_STEER * self.step_time,
                                            MAX_ACC * self.step_time)

    def _get_non_kin_rescale_params(self,
                                    max_num_scenes: int = 10
                                    ) -> NonKinematicActionRescaleParams:
        """Determine the action un-normalization parameters for the non-kinematic model
        from the current dataset in the L5Kit environment.

        :param max_num_scenes: maximum number of scenes to consider to determine parameters
        :return: Tuple of the action un-normalization parameters for non-kinematic model
        """
        scene_ids = list(range(self.max_scene_id)) if not self.overfit else [
            self.overfit_scene_id
        ]
        if len(scene_ids) > max_num_scenes:  # If too many scenes, CPU crashes
            scene_ids = scene_ids[:max_num_scenes]
        sim_dataset = SimulationDataset.from_dataset_indices(
            self.dataset, scene_ids, self.sim_cfg)
        return calculate_non_kinematic_rescale_params(sim_dataset)

    def _convert_action_to_ego_output(
            self, action: np.ndarray) -> Dict[str, np.ndarray]:
        """Convert the input action into ego output format.

        :param action: the input action provided by policy
        :return: action in ego output format, a numpy dict with keys 'positions' and 'yaws'
        """
        if self.use_kinematic:
            data_dict = self.kin_model.update(action[:2])
        else:
            # [batch_size=1, num_steps, (X, Y, yaw)]
            data = action.reshape(1, 1, 3)
            pred_positions = data[:, :, :2]
            # [batch_size, num_steps, 1->(yaw)]
            pred_yaws = data[:, :, 2:3]
            data_dict = {"positions": pred_positions, "yaws": pred_yaws}
        return data_dict
示例#3
0
zarr_dataset.open()
print(zarr_dataset)

# %% [markdown]
# Now, however it's time for us to look at the scenes and analyze them in depth. Theoretically, we could create a nifty little data-loader to do some heavy lifting for us.

# %% [code] {"_kg_hide-input":true}
import numpy as np
from IPython.display import display, clear_output
import PIL
 
cfg["raster_params"]["map_type"] = "py_semantic"
rast = build_rasterizer(cfg, dm)
dataset = EgoDataset(cfg, zarr_dataset, rast)
scene_idx = 2
indexes = dataset.get_scene_indices(scene_idx)
images = []

for idx in indexes:
    
    data = dataset[idx]
    im = data["image"].transpose(1, 2, 0)
    im = dataset.rasterizer.to_rgb(im)
    target_positions_pixels = transform_points(data["target_positions"] + data["centroid"][:2], data["world_to_image"])
    center_in_pixels = np.asarray(cfg["raster_params"]["ego_center"]) * cfg["raster_params"]["raster_size"]
    draw_trajectory(im, target_positions_pixels, data["target_yaws"], TARGET_POINTS_COLOR)
    clear_output(wait=True)
    #display(PIL.Image.fromarray(im[::-1]))

# %% [markdown]
# So, there's a lot of information in this one image. I'll try my best to point everything out, but do notify me if I make any errors. OK, let's get started with dissecting the image: