示例#1
0
def main():
    conf = Configs()
    experiment = Experiment(writers={'sqlite'})
    experiment.calc_configs(conf, {'epochs': 'random'}, ['set_seed', 'loop'])
    experiment.add_models(dict(model=conf.model))
    experiment.start(run=-1)
    conf.loop()
示例#2
0
def main():
    conf = Configs()
    experiment = Experiment(writers={'sqlite'})
    experiment.calc_configs(conf, {'optimizer': 'adam_optimizer'},
                            ['set_seed', 'main'])
    experiment.add_models(dict(model=conf.model))
    experiment.start()
    conf.main()
示例#3
0
def main():
    conf = Configs()
    experiment = Experiment(writers={'sqlite', 'tensorboard'})
    experiment.calc_configs(conf,
                            {'epochs': 'random'},
                            ['set_seed', 'main'])
    experiment.add_models(dict(model=conf.model))
    experiment.start()
    conf.main()
示例#4
0
def main():
    conf = Configs()
    experiment = Experiment(writers={'sqlite'})
    experiment.calc_configs(conf,
                            {},
                            run_order=['set_seed', 'main'])
    experiment.start()
    conf.main()
示例#5
0
from typing import List, Optional, NamedTuple

import torch
import torch.nn

from parser.load import EncodedFile, split_train_valid, load_files
from lab.experiment.pytorch import Experiment
from parser import tokenizer

# Configure the experiment
from parser.batch_builder import BatchBuilder
from parser.merge_tokens import InputProcessor

EXPERIMENT = Experiment(name="id_embeddings",
                        python_file=__file__,
                        comment="With ID embeddings",
                        check_repo_dirty=False,
                        is_log_python_file=False)

logger = EXPERIMENT.logger

# device to train on
device = torch.device("cuda:1")
cpu = torch.device("cpu")


class ModelOutput(NamedTuple):
    decoded_input_logits: torch.Tensor
    decoded_predictions: Optional[torch.Tensor]
    probabilities: torch.Tensor
    logits: torch.Tensor
示例#6
0
"""

import argparse

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

from lab.experiment.pytorch import Experiment

# Declare the experiment
EXPERIMENT = Experiment(name="mnist_pytorch",
                        python_file=__file__,
                        comment="Test",
                        check_repo_dirty=False
                        )

logger = EXPERIMENT.logger


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
示例#7
0
from typing import NamedTuple, List, Tuple

import torch
import torch.nn

import parser.load
import parser.tokenizer
from lab import colors
from lab.experiment.pytorch import Experiment
from simple_model import SimpleLstmModel
from parser import tokenizer

# Experiment configuration to load checkpoints
EXPERIMENT = Experiment(name="simple_lstm_1000",
                        python_file=__file__,
                        comment="Simple LSTM All Data",
                        check_repo_dirty=False,
                        is_log_python_file=False)

logger = EXPERIMENT.logger

# device to evaluate on
device = torch.device("cuda:1")

# Beam search
BEAM_SIZE = 8


class Suggestions(NamedTuple):
    codes: List[List[int]]
    matched: List[int]
示例#8
0
文件: test.py 项目: tonyle9/lab
def create_exp():
    return Experiment(name="test", comment="Test")