def _data_loader(is_train, batch_size, trans): return torch.utils.data.DataLoader( datasets.CIFAR10(str(logger.get_data_path()), train=is_train, download=True, transform=trans), batch_size=batch_size, shuffle=True)
def _data_loader(is_train, batch_size): return torch.utils.data.DataLoader( datasets.MNIST(str(logger.get_data_path()), train=is_train, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ])), batch_size=batch_size, shuffle=True, drop_last=True)
def _data_loader(is_train, batch_size, dl_args): return torch.utils.data.DataLoader( datasets.MNIST(str(logger.get_data_path()), train=is_train, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True, **dl_args)