def fit(self, completions, workdir=None, **kwargs):

        annotations = []
        for completion in completions:
            if is_skipped(completion):
                continue
            image_path = get_image_local_path(completion['data'][self.value])
            image_label = get_choice(completion)
            annotations.append((image_path, image_label))

        # Create dataset
        ds = tf.data.Dataset.from_tensor_slices(annotations)

        def prepare_item(item):
            label = tf.argmax(item[1] == self.labels)
            img = tf.io.read_file(item[0])
            img = tf.image.decode_jpeg(img, channels=3)
            img = tf.image.resize(img, [self.image_height, self.image_width])
            return img, label

        ds = ds.map(prepare_item, num_parallel_calls=tf.data.AUTOTUNE)
        ds = ds.cache().shuffle(buffer_size=1000).batch(
            self.batch_size).prefetch(buffer_size=tf.data.AUTOTUNE)

        self.model.compile(optimizer=tf.keras.optimizers.Adam(),
                           loss=tf.keras.losses.SparseCategoricalCrossentropy(
                               from_logits=True),
                           metrics=['acc'])
        self.model.fit(ds, epochs=self.epochs)
        model_file = os.path.join(workdir, 'checkpoint')
        self.model.save_weights(model_file)
        return {'model_file': model_file}
示例#2
0
    def predict(self, tasks, **kwargs):
        assert len(tasks) == 1
        task = tasks[0]
        image_path = get_image_local_path(task['data'][self.value],
                                          project_dir=self.project_path)
        model_results = inference_detector(self.model, image_path)
        results = []
        all_scores = []
        img_width, img_height = get_image_size(image_path)
        for bboxes, label in zip(model_results, self.model.CLASSES):
            output_label = self.label_map.get(label, label)

            if output_label not in self.labels_in_config:
                print(output_label + ' label not found in project config.')
                continue
            for bbox in bboxes:
                bbox = list(bbox)
                if not bbox:
                    continue
                score = float(bbox[-1])
                if score < self.score_thresh:
                    continue
                x, y, xmax, ymax = bbox[:4]
                results.append({
                    'from_name': self.from_name,
                    'to_name': self.to_name,
                    'type': 'rectanglelabels',
                    'value': {
                        'rectanglelabels': [output_label],
                        'x': x / img_width * 100,
                        'y': y / img_height * 100,
                        'width': (xmax - x) / img_width * 100,
                        'height': (ymax - y) / img_height * 100
                    },
                    'score': score
                })
                all_scores.append(score)
        avg_score = sum(all_scores) / len(all_scores)
        return [{'result': results, 'score': avg_score}]
    def predict(self, tasks, **kwargs):
        image_path = get_image_local_path(tasks[0]['data'][self.value])

        image = Image.open(image_path).resize(
            (self.image_width, self.image_height))
        image = np.array(image) / 255.0
        result = self.model.predict(image[np.newaxis, ...])
        predicted_label_idx = np.argmax(result[0], axis=-1)
        predicted_label_score = result[0][predicted_label_idx]
        predicted_label = self.labels[predicted_label_idx]
        return [{
            'result': [{
                'from_name': self.from_name,
                'to_name': self.to_name,
                'type': 'choices',
                'value': {
                    'choices': [str(predicted_label.numpy(), 'utf-8')]
                }
            }],
            'score':
            float(predicted_label_score)
        }]