class DataRow(DbObject, Updateable, BulkDeletable): """ A DataRow represents a single piece of data. For example, if you have a CSV with 100 rows, you will have 1 Dataset and 100 DataRows. """ external_id = Field.String("external_id") row_data = Field.String("row_data") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") # Relationships dataset = Relationship.ToOne("Dataset") created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) labels = Relationship.ToMany("Label", True) metadata = Relationship.ToMany("AssetMetadata", False, "metadata") predictions = Relationship.ToMany("Prediction", False) @staticmethod def bulk_delete(data_rows): """ Deletes all the given DataRows. Args: data_rows (list of DataRow): The DataRows to delete. """ BulkDeletable._bulk_delete(data_rows, True) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.metadata.supports_filtering = False self.metadata.supports_sorting = False def create_metadata(self, meta_type, meta_value): """ Creates an asset metadata for this DataRow. >>> datarow.create_metadata("TEXT", "This is a text message") Args: meta_type (str): Asset metadata type, must be one of: VIDEO, IMAGE, TEXT. meta_value (str): Asset metadata value. Returns: AssetMetadata DB object. """ meta_type_param = "metaType" meta_value_param = "metaValue" data_row_id_param = "dataRowId" query_str = """mutation CreateAssetMetadataPyApi( $%s: AttachmentType!, $%s: String!, $%s: ID!) { createAssetMetadata(data: { metaType: $%s metaValue: $%s dataRowId: $%s}) {%s}} """ % ( meta_type_param, meta_value_param, data_row_id_param, meta_type_param, meta_value_param, data_row_id_param, query.results_query_part(Entity.AssetMetadata)) res = self.client.execute( query_str, { meta_type_param: meta_type, meta_value_param: meta_value, data_row_id_param: self.uid }) return Entity.AssetMetadata(self.client, res["createAssetMetadata"])
class Review(DbObject, Deletable, Updateable): """ Reviewing labeled data is a collaborative quality assurance technique. A Review object indicates the quality of the assigned Label. The aggregated review numbers can be obtained on a Project object. Attributes: created_at (datetime) updated_at (datetime) score (float) created_by (Relationship): `ToOne` relationship to User organization (Relationship): `ToOne` relationship to Organization project (Relationship): `ToOne` relationship to Project label (Relationship): `ToOne` relationship to Label """ class NetScore(Enum): """ Negative, Zero, or Positive. """ Negative = auto() Zero = auto() Positive = auto() updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") score = Field.Float("score") created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) project = Relationship.ToOne("Project", False) label = Relationship.ToOne("Label", False)
class Prediction(DbObject): """ A prediction created by a PredictionModel. Legacy editor only. Refer to BulkImportRequest if using the new Editor. Attributes: updated_at (datetime) created_at (datetime) label (str) agreement (float) organization (Relationship): `ToOne` relationship to Organization prediction_model (Relationship): `ToOne` relationship to PredictionModel data_row (Relationship): `ToOne` relationship to DataRow project (Relationship): `ToOne` relationship to Project """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") organization = Relationship.ToOne("Organization", False) label = Field.String("label") agreement = Field.Float("agreement") prediction_model = Relationship.ToOne("PredictionModel", False) data_row = Relationship.ToOne("DataRow", False) project = Relationship.ToOne("Project", False)
class PredictionModel(DbObject): """ A PredictionModel creates a Prediction. Legacy editor only. Refer to BulkImportRequest if using the new Editor. Attributes: updated_at (datetime) created_at (datetime) name (str) slug (str) version (int) created_by (Relationship): `ToOne` relationship to User organization (Relationship): `ToOne` relationship to Organization """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) name = Field.String("name") slug = Field.String("slug") version = Field.Int("version") created_predictions = Relationship.ToMany("Prediction", False, "created_predictions")
class Benchmark(DbObject): """ Represents a benchmark label. The Benchmarks tool works by interspersing data to be labeled, for which there is a benchmark label, to each person labeling. These labeled data are compared against their respective benchmark and an accuracy score between 0 and 100 percent is calculated. Attributes: created_at (datetime) last_activity (datetime) average_agreement (float) completed_count (int) created_by (Relationship): `ToOne` relationship to User reference_label (Relationship): `ToOne` relationship to Label """ created_at = Field.DateTime("created_at") created_by = Relationship.ToOne("User", False, "created_by") last_activity = Field.DateTime("last_activity") average_agreement = Field.Float("average_agreement") completed_count = Field.Int("completed_count") reference_label = Relationship.ToOne("Label", False, "reference_label") def delete(self): label_param = "labelId" query_str = """mutation DeleteBenchmarkPyApi($%s: ID!) { deleteBenchmark(where: {labelId: $%s}) {id}} """ % (label_param, label_param) self.client.execute(query_str, {label_param: self.reference_label().uid})
class LabelingParameterOverride(DbObject): """ Customizes the order of assets in the label queue. Attributes: priority (int): A prioritization score. number_of_labels (int): Number of times an asset should be labeled. """ priority = Field.Int("priority") number_of_labels = Field.Int("number_of_labels")
class AssetMetadata(DbObject): """ AssetMetadata is a datatype to provide extra context about an asset while labeling. """ VIDEO = "VIDEO" IMAGE = "IMAGE" TEXT = "TEXT" meta_type = Field.String("meta_type") meta_value = Field.String("meta_value")
class LabelingFrontend(DbObject): """ Is a type representing an HTML / JavaScript UI that is used to generate labels. “Image Labeling” is the default Labeling Frontend that comes in every organization. You can create new labeling frontends for an organization. """ name = Field.String("name") description = Field.String("description") iframe_url_path = Field.String("iframe_url_path") # TODO other fields and relationships projects = Relationship.ToMany("Project", True)
class Prediction(DbObject): """ A prediction created by a PredictionModel. """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") organization = Relationship.ToOne("Organization", False) label = Field.String("label") agreement = Field.Float("agreement") prediction_model = Relationship.ToOne("PredictionModel", False) data_row = Relationship.ToOne("DataRow", False) project = Relationship.ToOne("Project", False)
class Label(DbObject, Updateable, BulkDeletable): """ Label represents an assessment on a DataRow. For example one label could contain 100 bounding boxes (annotations). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.reviews.supports_filtering = False label = Field.String("label") seconds_to_label = Field.Float("seconds_to_label") agreement = Field.Float("agreement") benchmark_agreement = Field.Float("benchmark_agreement") is_benchmark_reference = Field.Boolean("is_benchmark_reference") project = Relationship.ToOne("Project") data_row = Relationship.ToOne("DataRow") reviews = Relationship.ToMany("Review", False) created_by = Relationship.ToOne("User", False, "created_by") @staticmethod def bulk_delete(labels): """ Deletes all the given Labels. Args: labels (list of Label): The Labels to delete. """ BulkDeletable._bulk_delete(labels, False) def create_review(self, **kwargs): """ Creates a Review for this label. Kwargs: Review attributes. At a minimum a `Review.score` field value must be provided. """ kwargs[Entity.Review.label.name] = self kwargs[Entity.Review.project.name] = self.project() return self.client._create(Entity.Review, kwargs) def create_benchmark(self): """ Creates a Benchmark for this Label. Returns: The newly created Benchmark. """ label_id_param = "labelId" query_str = """mutation CreateBenchmarkPyApi($%s: ID!) { createBenchmark(data: {labelId: $%s}) {%s}} """ % ( label_id_param, label_id_param, query.results_query_part(Entity.Benchmark)) res = self.client.execute(query_str, {label_id_param: self.uid}) return Entity.Benchmark(self.client, res["createBenchmark"])
class PredictionModel(DbObject): """ A prediction model represents a specific version of a model. """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) name = Field.String("name") slug = Field.String("slug") version = Field.Int("version") created_predictions = Relationship.ToMany("Prediction", False, "created_predictions")
class Task(DbObject): """ Represents a server-side process that might take a longer time to process. Allows the Task state to be updated and checked on the client side. Attributes: updated_at (datetime) created_at (datetime) name (str) status (str) completion_percentage (float) created_by (Relationship): `ToOne` relationship to User organization (Relationship): `ToOne` relationship to Organization """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") name = Field.String("name") status = Field.String("status") completion_percentage = Field.Float("completion_percentage") # Relationships created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization") def refresh(self): """ Refreshes Task data from the server. """ tasks = list(self._user.created_tasks(where=Task.uid == self.uid)) if len(tasks) != 1: raise ResourceNotFoundError(Task, self.uid) for field in self.fields(): setattr(self, field.name, getattr(tasks[0], field.name)) def wait_till_done(self, timeout_seconds=60): """ Waits until the task is completed. Periodically queries the server to update the task attributes. Args: timeout_seconds (float): Maximum time this method can block, in seconds. Defaults to one minute. """ check_frequency = 2 # frequency of checking, in seconds while True: if self.status != "IN_PROGRESS": return sleep_time_seconds = min(check_frequency, timeout_seconds) logger.debug("Task.wait_till_done sleeping for %.2f seconds" % sleep_time_seconds) if sleep_time_seconds <= 0: break timeout_seconds -= check_frequency time.sleep(sleep_time_seconds) self.refresh()
class Invite(DbObject): """ An object representing a user invite """ created_at = Field.DateTime("created_at") organization_role_name = Field.String("organization_role_name") email = Field.String("email", "inviteeEmail") def __init__(self, client, invite_response): project_roles = invite_response.pop("projectInvites", []) super().__init__(client, invite_response) self.project_roles = [ ProjectRole(project=client.get_project(r['projectId']), role=client.get_roles()[format_role( r['projectRoleName'])]) for r in project_roles ]
class AssetMetadata(DbObject): """ Asset metadata (AKA Attachments) provides extra context about an asset while labeling. Attributes: meta_type (str): IMAGE, VIDEO, TEXT, or IMAGE_OVERLAY meta_value (str): URL to an external file or a string of text """ class MetaType(Enum): VIDEO = "VIDEO" IMAGE = "IMAGE" TEXT = "TEXT" IMAGE_OVERLAY = "IMAGE_OVERLAY" # For backwards compatibility for topic in MetaType: vars()[topic.name] = topic.value meta_type = Field.String("meta_type") meta_value = Field.String("meta_value")
class LabelingFrontend(DbObject): """ Label editor. Represents an HTML / JavaScript UI that is used to generate labels. “Editor” is the default Labeling Frontend that comes in every organization. You can create new labeling frontends for an organization. Attributes: name (str) description (str) iframe_url_path (str) projects (Relationship): `ToMany` relationship to Project """ name = Field.String("name") description = Field.String("description") iframe_url_path = Field.String("iframe_url_path") # TODO other fields and relationships projects = Relationship.ToMany("Project", True)
class Prediction(DbObject): """ A prediction created by a PredictionModel. NOTE: This is used for the legacy editor [1], if you wish to import annotations, refer to [2] [1] https://labelbox.com/docs/legacy/import-model-prediction [2] https://labelbox.com/docs/automation/model-assisted-labeling """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") organization = Relationship.ToOne("Organization", False) label = Field.String("label") agreement = Field.Float("agreement") prediction_model = Relationship.ToOne("PredictionModel", False) data_row = Relationship.ToOne("DataRow", False) project = Relationship.ToOne("Project", False)
class User(DbObject): """ A User is a registered Labelbox user (for example you) associated with data they create or import and an Organization they belong to. """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") email = Field.String("email") name = Field.String("nickname") nickname = Field.String("name") intercom_hash = Field.String("intercom_hash") picture = Field.String("picture") is_viewer = Field.Boolean("is_viewer") is_external_user = Field.Boolean("is_external_user") # Relationships organization = Relationship.ToOne("Organization") created_tasks = Relationship.ToMany("Task", False, "created_tasks") projects = Relationship.ToMany("Project", False)
class PredictionModel(DbObject): """ A prediction model represents a specific version of a model. NOTE: This is used for the legacy editor [1], if you wish to import annotations, refer to [2] [1] https://labelbox.com/docs/legacy/import-model-prediction [2] https://labelbox.com/docs/automation/model-assisted-labeling """ updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) name = Field.String("name") slug = Field.String("slug") version = Field.Int("version") created_predictions = Relationship.ToMany("Prediction", False, "created_predictions")
class Benchmark(DbObject): """ Benchmarks (also known as Golden Standard) is a quality assurance tool for training data. Training data quality is the measure of accuracy and consistency of the training data. Benchmarks works by interspersing data to be labeled, for which there is a benchmark label, to each person labeling. These labeled data are compared against their respective benchmark and an accuracy score between 0 and 100 percent is calculated. """ created_at = Field.DateTime("created_at") created_by = Relationship.ToOne("User", False, "created_by") last_activity = Field.DateTime("last_activity") average_agreement = Field.Float("average_agreement") completed_count = Field.Int("completed_count") reference_label = Relationship.ToOne("Label", False, "reference_label") def delete(self): label_param = "labelId" query_str = """mutation DeleteBenchmarkPyApi($%s: ID!) { deleteBenchmark(where: {labelId: $%s}) {id}} """ % (label_param, label_param) self.client.execute(query_str, {label_param: self.reference_label().uid})
class LabelingFrontendOptions(DbObject): """ Label interface options. Attributes: customization_options (str) project (Relationship): `ToOne` relationship to Project labeling_frontend (Relationship): `ToOne` relationship to LabelingFrontend organization (Relationship): `ToOne` relationship to Organization """ customization_options = Field.String("customization_options") project = Relationship.ToOne("Project") labeling_frontend = Relationship.ToOne("LabelingFrontend") organization = Relationship.ToOne("Organization")
class Ontology(DbObject): """An ontology specifies which tools and classifications are available to a project. This is read only for now. Attributes: name (str) description (str) updated_at (datetime) created_at (datetime) normalized (json) object_schema_count (int) classification_schema_count (int) projects (Relationship): `ToMany` relationship to Project created_by (Relationship): `ToOne` relationship to User """ name = Field.String("name") description = Field.String("description") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") normalized = Field.Json("normalized") object_schema_count = Field.Int("object_schema_count") classification_schema_count = Field.Int("classification_schema_count") projects = Relationship.ToMany("Project", True) created_by = Relationship.ToOne("User", False, "created_by") def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._tools: Optional[List[Tool]] = None self._classifications: Optional[List[Classification]] = None def tools(self) -> List[Tool]: """Get list of tools (AKA objects) in an Ontology.""" if self._tools is None: self._tools = [ Tool.from_dict(tool) for tool in self.normalized['tools'] ] return self._tools def classifications(self) -> List[Classification]: """Get list of classifications in an Ontology.""" if self._classifications is None: self._classifications = [ Classification.from_dict(classification) for classification in self.normalized['classifications'] ] return self._classifications
class Ontology(DbObject): """ A ontology specifies which tools and classifications are available to a project. NOTE: This is read only for now. >>> project = client.get_project(name="<project_name>") >>> ontology = project.ontology() >>> ontology.normalized """ name = Field.String("name") description = Field.String("description") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") normalized = Field.Json("normalized") object_schema_count = Field.Int("object_schema_count") classification_schema_count = Field.Int("classification_schema_count") projects = Relationship.ToMany("Project", True) created_by = Relationship.ToOne("User", False, "created_by") def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._tools: Optional[List[Tool]] = None self._classifications: Optional[List[Classification]] = None def tools(self) -> List[Tool]: if self._tools is None: self._tools = [ Tool.from_json(tool) for tool in self.normalized['tools'] ] return self._tools # type: ignore def classifications(self) -> List[Classification]: if self._classifications is None: self._classifications = [ Classification.from_json(classification) for classification in self.normalized['classifications'] ] return self._classifications # type: ignore
class LabelingFrontendOptions(DbObject): customization_options = Field.String("customization_options") project = Relationship.ToOne("Project") labeling_frontend = Relationship.ToOne("LabelingFrontend") organization = Relationship.ToOne("Organization")
class Organization(DbObject): """ An Organization is a group of Users. It is associated with data created by Users within that Organization. Typically all Users within an Organization have access to data created by any User in the same Organization. Attributes: updated_at (datetime) created_at (datetime) name (str) users (Relationship): `ToMany` relationship to User projects (Relationship): `ToMany` relationship to Project webhooks (Relationship): `ToMany` relationship to Webhook """ # RelationshipManagers in Organization use the type in Query (and # not the source object) because the server-side does not support # filtering on ID in the query for getting a single organization. def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for relationship in self.relationships(): getattr(self, relationship.name).filter_on_id = False updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") name = Field.String("name") # Relationships users = Relationship.ToMany("User", False) projects = Relationship.ToMany("Project", True) webhooks = Relationship.ToMany("Webhook", False) @experimental def invite_user( self, email: str, role: Role, project_roles: Optional[List[ProjectRole]] = None) -> Invite: """ Invite a new member to the org. This will send the user an email invite Args: email (str): email address of the user to invite role (Role): Role to assign to the user project_roles (Optional[List[ProjectRoles]]): List of project roles to assign to the User (if they have a project based org role). Returns: Invite for the user Notes: This function is currently experimental and has a few limitations that will be resolved in future releases 1. If you try to add an unsupported you will get an error referring to invalid foreign keys - In this case `role.get_roles` is likely not getting the right ids 2. Multiple invites can be sent for the same email. This can only be resolved in the UI for now. - Future releases of the SDK will support the ability to query and revoke invites to solve this problem (and/or checking on the backend) 3. Some server side response are unclear (e.g. if the user invites themself `None` is returned which the SDK raises as a `LabelboxError` ) """ if project_roles and role.name != "NONE": raise ValueError( f"Project roles cannot be set for a user with organization level permissions. Found role name `{role.name}`, expected `NONE`" ) data_param = "data" query_str = """mutation createInvitesPyApi($%s: [CreateInviteInput!]){ createInvites(data: $%s){ invite { id createdAt organizationRoleName inviteeEmail inviter { %s } }}}""" % ( data_param, data_param, query.results_query_part(User)) projects = [{ "projectId": project_role.project.uid, "projectRoleId": project_role.role.uid } for project_role in project_roles or []] res = self.client.execute(query_str, { data_param: [{ "inviterId": self.client.get_user().uid, "inviteeEmail": email, "organizationId": self.uid, "organizationRoleId": role.uid, "projects": projects }] }, experimental=True) invite_response = res['createInvites'][0]['invite'] if not invite_response: raise LabelboxError(f"Unable to send invite for email {email}") return Invite(self.client, invite_response) @experimental def invite_limit(self) -> InviteLimit: """ Retrieve invite limits for the org This already accounts for users currently in the org Meaining that `used = users + invites, remaining = limit - (users + invites)` Returns: InviteLimit """ org_id_param = "organizationId" res = self.client.execute("""query InvitesLimitPyApi($%s: ID!) { invitesLimit(where: {id: $%s}) { used limit remaining } }""" % (org_id_param, org_id_param), {org_id_param: self.uid}, experimental=True) return InviteLimit( **{utils.snake_case(k): v for k, v in res['invitesLimit'].items()}) def remove_user(self, user: User): """ Deletes a user from the organization. This cannot be undone without sending another invite. Args: user (User): The user to delete from the org """ user_id_param = "userId" self.client.execute( """mutation DeleteMemberPyApi($%s: ID!) { updateUser(where: {id: $%s}, data: {deleted: true}) { id deleted } }""" % (user_id_param, user_id_param), {user_id_param: user.uid})
class LabelingParameterOverride(DbObject): priority = Field.Int("priority") number_of_labels = Field.Int("number_of_labels")
class Project(DbObject, Updateable, Deletable): """ A Project is a container that includes a labeling frontend, an ontology, datasets and labels. Attributes: name (str) description (str) updated_at (datetime) created_at (datetime) setup_complete (datetime) last_activity_time (datetime) auto_audit_number_of_labels (int) auto_audit_percentage (float) datasets (Relationship): `ToMany` relationship to Dataset created_by (Relationship): `ToOne` relationship to User organization (Relationship): `ToOne` relationship to Organization reviews (Relationship): `ToMany` relationship to Review labeling_frontend (Relationship): `ToOne` relationship to LabelingFrontend labeling_frontend_options (Relationship): `ToMany` relationship to LabelingFrontendOptions labeling_parameter_overrides (Relationship): `ToMany` relationship to LabelingParameterOverride webhooks (Relationship): `ToMany` relationship to Webhook benchmarks (Relationship): `ToMany` relationship to Benchmark active_prediction_model (Relationship): `ToOne` relationship to PredictionModel predictions (Relationship): `ToMany` relationship to Prediction ontology (Relationship): `ToOne` relationship to Ontology """ name = Field.String("name") description = Field.String("description") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") setup_complete = Field.DateTime("setup_complete") last_activity_time = Field.DateTime("last_activity_time") auto_audit_number_of_labels = Field.Int("auto_audit_number_of_labels") auto_audit_percentage = Field.Float("auto_audit_percentage") # Relationships datasets = Relationship.ToMany("Dataset", True) created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) reviews = Relationship.ToMany("Review", True) labeling_frontend = Relationship.ToOne("LabelingFrontend") labeling_frontend_options = Relationship.ToMany( "LabelingFrontendOptions", False, "labeling_frontend_options") labeling_parameter_overrides = Relationship.ToMany( "LabelingParameterOverride", False, "labeling_parameter_overrides") webhooks = Relationship.ToMany("Webhook", False) benchmarks = Relationship.ToMany("Benchmark", False) active_prediction_model = Relationship.ToOne("PredictionModel", False, "active_prediction_model") predictions = Relationship.ToMany("Prediction", False) ontology = Relationship.ToOne("Ontology", True) def members(self): """ Fetch all current members for this project Returns: A `PaginatedCollection of `ProjectMember`s """ id_param = "projectId" query_str = """query ProjectMemberOverviewPyApi($%s: ID!) { project(where: {id : $%s}) { id members(skip: %%d first: %%d){ id user { %s } role { id name } } } }""" % (id_param, id_param, query.results_query_part(Entity.User)) return PaginatedCollection(self.client, query_str, {id_param: str(self.uid)}, ["project", "members"], ProjectMember) def create_label(self, **kwargs): """ Creates a label on a Legacy Editor project. Not supported in the new Editor. Args: **kwargs: Label attributes. At minimum, the label `DataRow`. """ # Copy-paste of Client._create code so we can inject # a connection to Type. Type objects are on their way to being # deprecated and we don't want the Py client lib user to know # about them. At the same time they're connected to a Label at # label creation in a non-standard way (connect via name). logger.warning( "`create_label` is deprecated and is not compatible with the new editor." ) Label = Entity.Label kwargs[Label.project] = self kwargs[Label.seconds_to_label] = kwargs.get( Label.seconds_to_label.name, 0.0) data = { Label.attribute(attr) if isinstance(attr, str) else attr: value.uid if isinstance(value, DbObject) else value for attr, value in kwargs.items() } query_str, params = query.create(Label, data) # Inject connection to Type query_str = query_str.replace( "data: {", "data: {type: {connect: {name: \"Any\"}} ") res = self.client.execute(query_str, params) return Label(self.client, res["createLabel"]) def labels(self, datasets=None, order_by=None): """ Custom relationship expansion method to support limited filtering. Args: datasets (iterable of Dataset): Optional collection of Datasets whose Labels are sought. If not provided, all Labels in this Project are returned. order_by (None or (Field, Field.Order)): Ordering clause. """ Label = Entity.Label if datasets is not None: where = " where:{dataRow: {dataset: {id_in: [%s]}}}" % ", ".join( '"%s"' % dataset.uid for dataset in datasets) else: where = "" if order_by is not None: query.check_order_by_clause(Label, order_by) order_by_str = "orderBy: %s_%s" % (order_by[0].graphql_name, order_by[1].name.upper()) else: order_by_str = "" id_param = "projectId" query_str = """query GetProjectLabelsPyApi($%s: ID!) {project (where: {id: $%s}) {labels (skip: %%d first: %%d %s %s) {%s}}}""" % ( id_param, id_param, where, order_by_str, query.results_query_part(Label)) return PaginatedCollection(self.client, query_str, {id_param: self.uid}, ["project", "labels"], Label) def export_labels(self, timeout_seconds=60): """ Calls the server-side Label exporting that generates a JSON payload, and returns the URL to that payload. Will only generate a new URL at a max frequency of 30 min. Args: timeout_seconds (float): Max waiting time, in seconds. Returns: URL of the data file with this Project's labels. If the server didn't generate during the `timeout_seconds` period, None is returned. """ sleep_time = 2 id_param = "projectId" query_str = """mutation GetLabelExportUrlPyApi($%s: ID!) {exportLabels(data:{projectId: $%s }) {downloadUrl createdAt shouldPoll} } """ % (id_param, id_param) while True: res = self.client.execute(query_str, {id_param: self.uid}) res = res["exportLabels"] if not res["shouldPoll"]: return res["downloadUrl"] timeout_seconds -= sleep_time if timeout_seconds <= 0: return None logger.debug("Project '%s' label export, waiting for server...", self.uid) time.sleep(sleep_time) def export_issues(self, status=None): """ Calls the server-side Issues exporting that returns the URL to that payload. Args: status (string): valid values: Open, Resolved Returns: URL of the data file with this Project's issues. """ id_param = "projectId" status_param = "status" query_str = """query GetProjectIssuesExportPyApi($%s: ID!, $%s: IssueStatus) { project(where: { id: $%s }) { issueExportUrl(where: { status: $%s }) } }""" % (id_param, status_param, id_param, status_param) valid_statuses = {None, "Open", "Resolved"} if status not in valid_statuses: raise ValueError("status must be in {}. Found {}".format( valid_statuses, status)) res = self.client.execute(query_str, { id_param: self.uid, status_param: status }) res = res['project'] logger.debug("Project '%s' issues export, link generated", self.uid) return res.get('issueExportUrl') def upsert_instructions(self, instructions_file: str): """ * Uploads instructions to the UI. Running more than once will replace the instructions Args: instructions_file (str): Path to a local file. * Must be either a pdf, text, or html file. Raises: ValueError: * project must be setup * instructions file must end with one of ".text", ".txt", ".pdf", ".html" """ if self.setup_complete is None: raise ValueError( "Cannot attach instructions to a project that has not been set up." ) frontend = self.labeling_frontend() frontendId = frontend.uid if frontend.name != "Editor": logger.warning( f"This function has only been tested to work with the Editor front end. Found %s", frontend.name) supported_instruction_formats = (".text", ".txt", ".pdf", ".html") if not instructions_file.endswith(supported_instruction_formats): raise ValueError( f"instructions_file must end with one of {supported_instruction_formats}. Found {instructions_file}" ) lfo = list(self.labeling_frontend_options())[-1] instructions_url = self.client.upload_file(instructions_file) customization_options = json.loads(lfo.customization_options) customization_options['projectInstructions'] = instructions_url option_id = lfo.uid self.client.execute( """mutation UpdateFrontendWithExistingOptionsPyApi ( $frontendId: ID!, $optionsId: ID!, $name: String!, $description: String!, $customizationOptions: String! ) { updateLabelingFrontend( where: {id: $frontendId}, data: {name: $name, description: $description} ) {id} updateLabelingFrontendOptions( where: {id: $optionsId}, data: {customizationOptions: $customizationOptions} ) {id} }""", { "frontendId": frontendId, "optionsId": option_id, "name": frontend.name, "description": "Video, image, and text annotation", "customizationOptions": json.dumps(customization_options) }) def labeler_performance(self): """ Returns the labeler performances for this Project. Returns: A PaginatedCollection of LabelerPerformance objects. """ id_param = "projectId" query_str = """query LabelerPerformancePyApi($%s: ID!) { project(where: {id: $%s}) { labelerPerformance(skip: %%d first: %%d) { count user {%s} secondsPerLabel totalTimeLabeling consensus averageBenchmarkAgreement lastActivityTime} }}""" % (id_param, id_param, query.results_query_part(Entity.User)) def create_labeler_performance(client, result): result["user"] = Entity.User(client, result["user"]) # python isoformat doesn't accept Z as utc timezone result["lastActivityTime"] = datetime.fromisoformat( result["lastActivityTime"].replace('Z', '+00:00')) return LabelerPerformance(**{ utils.snake_case(key): value for key, value in result.items() }) return PaginatedCollection(self.client, query_str, {id_param: self.uid}, ["project", "labelerPerformance"], create_labeler_performance) def review_metrics(self, net_score): """ Returns this Project's review metrics. Args: net_score (None or Review.NetScore): Indicates desired metric. Returns: int, aggregation count of reviews for given `net_score`. """ if net_score not in (None, ) + tuple(Entity.Review.NetScore): raise InvalidQueryError( "Review metrics net score must be either None " "or one of Review.NetScore values") id_param = "projectId" net_score_literal = "None" if net_score is None else net_score.name query_str = """query ProjectReviewMetricsPyApi($%s: ID!){ project(where: {id:$%s}) {reviewMetrics {labelAggregate(netScore: %s) {count}}} }""" % (id_param, id_param, net_score_literal) res = self.client.execute(query_str, {id_param: self.uid}) return res["project"]["reviewMetrics"]["labelAggregate"]["count"] def setup(self, labeling_frontend, labeling_frontend_options): """ Finalizes the Project setup. Args: labeling_frontend (LabelingFrontend): Which UI to use to label the data. labeling_frontend_options (dict or str): Labeling frontend options, a.k.a. project ontology. If given a `dict` it will be converted to `str` using `json.dumps`. """ organization = self.client.get_organization() if not isinstance(labeling_frontend_options, str): labeling_frontend_options = json.dumps(labeling_frontend_options) self.labeling_frontend.connect(labeling_frontend) LFO = Entity.LabelingFrontendOptions labeling_frontend_options = self.client._create( LFO, { LFO.project: self, LFO.labeling_frontend: labeling_frontend, LFO.customization_options: labeling_frontend_options, LFO.organization: organization }) timestamp = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") self.update(setup_complete=timestamp) def validate_labeling_parameter_overrides(self, data): for idx, row in enumerate(data): if len(row) != 3: raise TypeError( f"Data must be a list of tuples containing a DataRow, priority (int), num_labels (int). Found {len(row)} items. Index: {idx}" ) data_row, priority, num_labels = row if not isinstance(data_row, DataRow): raise TypeError( f"data_row should be be of type DataRow. Found {type(data_row)}. Index: {idx}" ) for name, value in [["Priority", priority], ["Number of labels", num_labels]]: if not isinstance(value, int): raise TypeError( f"{name} must be an int. Found {type(value)} for data_row {data_row}. Index: {idx}" ) if value < 1: raise ValueError( f"{name} must be greater than 0 for data_row {data_row}. Index: {idx}" ) def set_labeling_parameter_overrides(self, data): """ Adds labeling parameter overrides to this project. See information on priority here: https://docs.labelbox.com/en/configure-editor/queue-system#reservation-system >>> project.set_labeling_parameter_overrides([ >>> (data_row_1, 2, 3), (data_row_2, 1, 4)]) Args: data (iterable): An iterable of tuples. Each tuple must contain (DataRow, priority<int>, number_of_labels<int>) for the new override. Priority: * Data will be labeled in priority order. - A lower number priority is labeled first. - Minimum priority is 1. * Priority is not the queue position. - The position is determined by the relative priority. - E.g. [(data_row_1, 5,1), (data_row_2, 2,1), (data_row_3, 10,1)] will be assigned in the following order: [data_row_2, data_row_1, data_row_3] * Datarows with parameter overrides will appear before datarows without overrides. * The priority only effects items in the queue. - Assigning a priority will not automatically add the item back into the queue. Number of labels: * The number of times a data row should be labeled. - Creates duplicate data rows in a project (one for each number of labels). * New duplicated data rows will be added to the queue. - Already labeled duplicates will not be sent back to the queue. * The queue will never assign the same datarow to a single labeler more than once. - If the number of labels is greater than the number of labelers working on a project then the extra items will remain in the queue (this can be fixed by removing the override at any time). * Setting this to 1 will result in the default behavior (no duplicates). Returns: bool, indicates if the operation was a success. """ self.validate_labeling_parameter_overrides(data) data_str = ",\n".join( "{dataRow: {id: \"%s\"}, priority: %d, numLabels: %d }" % (data_row.uid, priority, num_labels) for data_row, priority, num_labels in data) id_param = "projectId" query_str = """mutation SetLabelingParameterOverridesPyApi($%s: ID!){ project(where: { id: $%s }) {setLabelingParameterOverrides (data: [%s]) {success}}} """ % (id_param, id_param, data_str) res = self.client.execute(query_str, {id_param: self.uid}) return res["project"]["setLabelingParameterOverrides"]["success"] def unset_labeling_parameter_overrides(self, data_rows): """ Removes labeling parameter overrides to this project. * This will remove unlabeled duplicates in the queue. Args: data_rows (iterable): An iterable of DataRows. Returns: bool, indicates if the operation was a success. """ id_param = "projectId" query_str = """mutation UnsetLabelingParameterOverridesPyApi($%s: ID!){ project(where: { id: $%s}) { unsetLabelingParameterOverrides(data: [%s]) { success }}}""" % ( id_param, id_param, ",\n".join("{dataRowId: \"%s\"}" % row.uid for row in data_rows)) res = self.client.execute(query_str, {id_param: self.uid}) return res["project"]["unsetLabelingParameterOverrides"]["success"] def upsert_review_queue(self, quota_factor): """ Sets the the proportion of total assets in a project to review. More information can be found here: https://docs.labelbox.com/en/quality-assurance/review-labels#configure-review-percentage Args: quota_factor (float): Which part (percentage) of the queue to reinitiate. Between 0 and 1. """ if not 0. < quota_factor < 1.: raise ValueError("Quota factor must be in the range of [0,1]") id_param = "projectId" quota_param = "quotaFactor" query_str = """mutation UpsertReviewQueuePyApi($%s: ID!, $%s: Float!){ upsertReviewQueue(where:{project: {id: $%s}} data:{quotaFactor: $%s}) {id}}""" % ( id_param, quota_param, id_param, quota_param) res = self.client.execute(query_str, { id_param: self.uid, quota_param: quota_factor }) def extend_reservations(self, queue_type): """ Extends all the current reservations for the current user on the given queue type. Args: queue_type (str): Either "LabelingQueue" or "ReviewQueue" Returns: int, the number of reservations that were extended. """ if queue_type not in ("LabelingQueue", "ReviewQueue"): raise InvalidQueryError("Unsupported queue type: %s" % queue_type) id_param = "projectId" query_str = """mutation ExtendReservationsPyApi($%s: ID!){ extendReservations(projectId:$%s queueType:%s)}""" % ( id_param, id_param, queue_type) res = self.client.execute(query_str, {id_param: self.uid}) return res["extendReservations"] def create_prediction_model(self, name, version): """ Creates a PredictionModel connected to a Legacy Editor Project. Args: name (str): The new PredictionModel's name. version (int): The new PredictionModel's version. Returns: A newly created PredictionModel. """ logger.warning( "`create_prediction_model` is deprecated and is not compatible with the new editor." ) PM = Entity.PredictionModel model = self.client._create(PM, { PM.name.name: name, PM.version.name: version }) self.active_prediction_model.connect(model) return model def create_prediction(self, label, data_row, prediction_model=None): """ Creates a Prediction within a Legacy Editor Project. Not supported in the new Editor. Args: label (str): The `label` field of the new Prediction. data_row (DataRow): The DataRow for which the Prediction is created. prediction_model (PredictionModel or None): The PredictionModel within which the new Prediction is created. If None then this Project's active_prediction_model is used. Return: A newly created Prediction. Raises: labelbox.excepions.InvalidQueryError: if given `prediction_model` is None and this Project's active_prediction_model is also None. """ logger.warning( "`create_prediction` is deprecated and is not compatible with the new editor." ) if prediction_model is None: prediction_model = self.active_prediction_model() if prediction_model is None: raise InvalidQueryError( "Project '%s' has no active prediction model" % self.name) label_param = "label" model_param = "prediction_model_id" project_param = "project_id" data_row_param = "data_row_id" Prediction = Entity.Prediction query_str = """mutation CreatePredictionPyApi( $%s: String!, $%s: ID!, $%s: ID!, $%s: ID!) {createPrediction( data: {label: $%s, predictionModelId: $%s, projectId: $%s, dataRowId: $%s}) {%s}}""" % (label_param, model_param, project_param, data_row_param, label_param, model_param, project_param, data_row_param, query.results_query_part(Prediction)) params = { label_param: label, model_param: prediction_model.uid, data_row_param: data_row.uid, project_param: self.uid } res = self.client.execute(query_str, params) return Prediction(self.client, res["createPrediction"]) def enable_model_assisted_labeling(self, toggle: bool = True) -> bool: """ Turns model assisted labeling either on or off based on input Args: toggle (bool): True or False boolean Returns: True if toggled on or False if toggled off """ project_param = "project_id" show_param = "show" query_str = """mutation toggle_model_assisted_labelingPyApi($%s: ID!, $%s: Boolean!) { project(where: {id: $%s }) { showPredictionsToLabelers(show: $%s) { id, showingPredictionsToLabelers } } }""" % (project_param, show_param, project_param, show_param) params = {project_param: self.uid, show_param: toggle} res = self.client.execute(query_str, params) return res["project"]["showPredictionsToLabelers"][ "showingPredictionsToLabelers"] def upload_annotations( self, name: str, annotations: Union[str, Path, Iterable[Dict]], validate: bool = True) -> 'BulkImportRequest': # type: ignore """ Uploads annotations to a new Editor project. Args: name (str): name of the BulkImportRequest job annotations (str or Path or Iterable): url that is publicly accessible by Labelbox containing an ndjson file OR local path to an ndjson file OR iterable of annotation rows validate (bool): Whether or not to validate the payload before uploading. Returns: BulkImportRequest """ if isinstance(annotations, str) or isinstance(annotations, Path): def _is_url_valid(url: Union[str, Path]) -> bool: """ Verifies that the given string is a valid url. Args: url: string to be checked Returns: True if the given url is valid otherwise False """ if isinstance(url, Path): return False parsed = urlparse(url) return bool(parsed.scheme) and bool(parsed.netloc) if _is_url_valid(annotations): return BulkImportRequest.create_from_url(client=self.client, project_id=self.uid, name=name, url=str(annotations), validate=validate) else: path = Path(annotations) if not path.exists(): raise FileNotFoundError( f'{annotations} is not a valid url nor existing local file' ) return BulkImportRequest.create_from_local_file( client=self.client, project_id=self.uid, name=name, file=path, validate_file=validate, ) elif isinstance(annotations, Iterable): return BulkImportRequest.create_from_objects( client=self.client, project_id=self.uid, name=name, predictions=annotations, # type: ignore validate=validate) else: raise ValueError( f'Invalid annotations given of type: {type(annotations)}')
class Dataset(DbObject, Updateable, Deletable): """ A Dataset is a collection of DataRows. Attributes: name (str) description (str) updated_at (datetime) created_at (datetime) projects (Relationship): `ToMany` relationship to Project data_rows (Relationship): `ToMany` relationship to DataRow created_by (Relationship): `ToOne` relationship to User organization (Relationship): `ToOne` relationship to Organization """ name = Field.String("name") description = Field.String("description") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") # Relationships projects = Relationship.ToMany("Project", True) data_rows = Relationship.ToMany("DataRow", False) created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) def create_data_row(self, **kwargs): """ Creates a single DataRow belonging to this dataset. >>> dataset.create_data_row(row_data="http://my_site.com/photos/img_01.jpg") Args: **kwargs: Key-value arguments containing new `DataRow` data. At a minimum, must contain `row_data`. Raises: InvalidQueryError: If `DataRow.row_data` field value is not provided in `kwargs`. InvalidAttributeError: in case the DB object type does not contain any of the field names given in `kwargs`. """ DataRow = Entity.DataRow if DataRow.row_data.name not in kwargs: raise InvalidQueryError( "DataRow.row_data missing when creating DataRow.") # If row data is a local file path, upload it to server. row_data = kwargs[DataRow.row_data.name] if os.path.exists(row_data): kwargs[DataRow.row_data.name] = self.client.upload_file(row_data) kwargs[DataRow.dataset.name] = self return self.client._create(DataRow, kwargs) def create_data_rows(self, items): """ Creates multiple DataRow objects based on the given `items`. Each element in `items` can be either a `str` or a `dict`. If it is a `str`, then it is interpreted as a local file path. The file is uploaded to Labelbox and a DataRow referencing it is created. If an item is a `dict`, then it could support one of the two following structures 1. For static imagery, video, and text it should map `DataRow` fields (or their names) to values. At the minimum an `item` passed as a `dict` must contain a `DataRow.row_data` key and value. 2. For tiled imagery the dict must match the import structure specified in the link below https://docs.labelbox.com/data-model/en/index-en#tiled-imagery-import >>> dataset.create_data_rows([ >>> {DataRow.row_data:"http://my_site.com/photos/img_01.jpg"}, >>> "path/to/file2.jpg", >>> {"tileLayerUrl" : "http://", ...} >>> ]) For an example showing how to upload tiled data_rows see the following notebook: https://github.com/Labelbox/labelbox-python/blob/ms/develop/model_assisted_labeling/tiled_imagery_mal.ipynb Args: items (iterable of (dict or str)): See above for details. Returns: Task representing the data import on the server side. The Task can be used for inspecting task progress and waiting until it's done. Raises: InvalidQueryError: If the `items` parameter does not conform to the specification above or if the server did not accept the DataRow creation request (unknown reason). ResourceNotFoundError: If unable to retrieve the Task for the import process. This could imply that the import failed. InvalidAttributeError: If there are fields in `items` not valid for a DataRow. """ file_upload_thread_count = 20 DataRow = Entity.DataRow def upload_if_necessary(item): if isinstance(item, str): item_url = self.client.upload_file(item) # Convert item from str into a dict so it gets processed # like all other dicts. item = {DataRow.row_data: item_url, DataRow.external_id: item} return item with ThreadPool(file_upload_thread_count) as thread_pool: items = thread_pool.map(upload_if_necessary, items) def convert_item(item): # Don't make any changes to tms data if "tileLayerUrl" in item: return item # Convert string names to fields. item = { key if isinstance(key, Field) else DataRow.field(key): value for key, value in item.items() } if DataRow.row_data not in item: raise InvalidQueryError( "DataRow.row_data missing when creating DataRow.") invalid_keys = set(item) - set(DataRow.fields()) if invalid_keys: raise InvalidAttributeError(DataRow, invalid_keys) # Item is valid, convert it to a dict {graphql_field_name: value} # Need to change the name of DataRow.row_data to "data" return { "data" if key == DataRow.row_data else key.graphql_name: value for key, value in item.items() } # Prepare and upload the desciptor file items = [convert_item(item) for item in items] data = json.dumps(items) descriptor_url = self.client.upload_data(data) # Create data source dataset_param = "datasetId" url_param = "jsonUrl" query_str = """mutation AppendRowsToDatasetPyApi($%s: ID!, $%s: String!){ appendRowsToDataset(data:{datasetId: $%s, jsonFileUrl: $%s} ){ taskId accepted } } """ % (dataset_param, url_param, dataset_param, url_param) res = self.client.execute(query_str, { dataset_param: self.uid, url_param: descriptor_url }) res = res["appendRowsToDataset"] if not res["accepted"]: raise InvalidQueryError( "Server did not accept DataRow creation request") # Fetch and return the task. task_id = res["taskId"] user = self.client.get_user() task = list(user.created_tasks(where=Entity.Task.uid == task_id)) # Cache user in a private variable as the relationship can't be # resolved due to server-side limitations (see Task.created_by) # for more info. if len(task) != 1: raise ResourceNotFoundError(Entity.Task, task_id) task = task[0] task._user = user return task def data_rows_for_external_id(self, external_id, limit=10): """ Convenience method for getting a single `DataRow` belonging to this `Dataset` that has the given `external_id`. Args: external_id (str): External ID of the sought `DataRow`. limit (int): The maximum number of data rows to return for the given external_id Returns: A single `DataRow` with the given ID. Raises: labelbox.exceptions.ResourceNotFoundError: If there is no `DataRow` in this `DataSet` with the given external ID, or if there are multiple `DataRows` for it. """ DataRow = Entity.DataRow where = DataRow.external_id == external_id data_rows = self.data_rows(where=where) # Get at most `limit` data_rows. data_rows = list(islice(data_rows, limit)) if not len(data_rows): raise ResourceNotFoundError(DataRow, where) return data_rows def data_row_for_external_id(self, external_id): """ Convenience method for getting a single `DataRow` belonging to this `Dataset` that has the given `external_id`. Args: external_id (str): External ID of the sought `DataRow`. Returns: A single `DataRow` with the given ID. Raises: labelbox.exceptions.ResourceNotFoundError: If there is no `DataRow` in this `DataSet` with the given external ID, or if there are multiple `DataRows` for it. """ data_rows = self.data_rows_for_external_id(external_id=external_id, limit=2) if len(data_rows) > 1: logger.warning( f"More than one data_row has the provided external_id : `%s`. Use function data_rows_for_external_id to fetch all", external_id) return data_rows[0]
class Dataset(DbObject, Updateable, Deletable): """ A dataset is a collection of DataRows. For example, if you have a CSV with 100 rows, you will have 1 Dataset and 100 DataRows. """ name = Field.String("name") description = Field.String("description") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") # Relationships projects = Relationship.ToMany("Project", True) data_rows = Relationship.ToMany("DataRow", False) created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) def create_data_row(self, **kwargs): """ Creates a single DataRow belonging to this dataset. >>> dataset.create_data_row(row_data="http://my_site.com/photos/img_01.jpg") Kwargs: Key-value arguments containing new `DataRow` data. At a minimum `kwargs` must contain `row_data`. The value for `row_data` is a string. If it is a path to an existing local file then it is uploaded to Labelbox's server. Otherwise it is treated as an external URL. Raises: InvalidQueryError: If `DataRow.row_data` field value is not provided in `kwargs`. InvalidAttributeError: in case the DB object type does not contain any of the field names given in `kwargs`. """ DataRow = Entity.DataRow if DataRow.row_data.name not in kwargs: raise InvalidQueryError( "DataRow.row_data missing when creating DataRow.") # If row data is a local file path, upload it to server. row_data = kwargs[DataRow.row_data.name] if os.path.exists(row_data): kwargs[DataRow.row_data.name] = self.client.upload_file(row_data) kwargs[DataRow.dataset.name] = self return self.client._create(DataRow, kwargs) def create_data_rows(self, items): """ Creates multiple DataRow objects based on the given `items`. Each element in `items` can be either a `str` or a `dict`. If it is a `str`, then it is interpreted as a local file path. The file is uploaded to Labelbox and a DataRow referencing it is created. If an item is a `dict`, then it should map `DataRow` fields (or their names) to values. At the minimum an `item` passed as a `dict` must contain a `DataRow.row_data` key and value. >>> dataset.create_data_rows([ >>> {DataRow.row_data:"http://my_site.com/photos/img_01.jpg"}, >>> "path/to/file2.jpg" >>> ]) Args: items (iterable of (dict or str)): See above for details. Returns: Task representing the data import on the server side. The Task can be used for inspecting task progress and waiting until it's done. Raises: InvalidQueryError: If the `items` parameter does not conform to the specification above or if the server did not accept the DataRow creation request (unknown reason). ResourceNotFoundError: If unable to retrieve the Task for the import process. This could imply that the import failed. InvalidAttributeError: If there are fields in `items` not valid for a DataRow. """ file_upload_thread_count = 20 DataRow = Entity.DataRow def upload_if_necessary(item): if isinstance(item, str): item_url = self.client.upload_file(item) # Convert item from str into a dict so it gets processed # like all other dicts. item = {DataRow.row_data: item_url, DataRow.external_id: item} return item with ThreadPool(file_upload_thread_count) as thread_pool: items = thread_pool.map(upload_if_necessary, items) def convert_item(item): # Convert string names to fields. item = { key if isinstance(key, Field) else DataRow.field(key): value for key, value in item.items() } if DataRow.row_data not in item: raise InvalidQueryError( "DataRow.row_data missing when creating DataRow.") invalid_keys = set(item) - set(DataRow.fields()) if invalid_keys: raise InvalidAttributeError(DataRow, invalid_fields) # Item is valid, convert it to a dict {graphql_field_name: value} # Need to change the name of DataRow.row_data to "data" return { "data" if key == DataRow.row_data else key.graphql_name: value for key, value in item.items() } # Prepare and upload the desciptor file data = json.dumps([convert_item(item) for item in items]) descriptor_url = self.client.upload_data(data) # Create data source dataset_param = "datasetId" url_param = "jsonUrl" query_str = """mutation AppendRowsToDatasetPyApi($%s: ID!, $%s: String!){ appendRowsToDataset(data:{datasetId: $%s, jsonFileUrl: $%s} ){ taskId accepted } } """ % (dataset_param, url_param, dataset_param, url_param) res = self.client.execute(query_str, { dataset_param: self.uid, url_param: descriptor_url }) res = res["appendRowsToDataset"] if not res["accepted"]: raise InvalidQueryError( "Server did not accept DataRow creation request") # Fetch and return the task. task_id = res["taskId"] user = self.client.get_user() task = list(user.created_tasks(where=Entity.Task.uid == task_id)) # Cache user in a private variable as the relationship can't be # resolved due to server-side limitations (see Task.created_by) # for more info. if len(task) != 1: raise ResourceNotFoundError(Entity.Task, task_id) task = task[0] task._user = user return task def data_row_for_external_id(self, external_id): """ Convenience method for getting a single `DataRow` belonging to this `Dataset` that has the given `external_id`. Args: external_id (str): External ID of the sought `DataRow`. Returns: A single `DataRow` with the given ID. Raises: labelbox.exceptions.ResourceNotFoundError: If there is no `DataRow` in this `DataSet` with the given external ID, or if there are multiple `DataRows` for it. """ DataRow = Entity.DataRow where = DataRow.external_id == external_id data_rows = self.data_rows(where=where) # Get at most two data_rows. data_rows = [row for row, _ in zip(data_rows, range(2))] if len(data_rows) != 1: raise ResourceNotFoundError(DataRow, where) return data_rows[0]
class Webhook(DbObject, Updateable): """ Represents a server-side rule for sending notifications to a web-server whenever one of several predefined actions happens within a context of a Project or an Organization. """ # Status ACTIVE = "ACTIVE" INACTIVE = "INACTIVE" REVOKED = "REVOKED" # Topic LABEL_CREATED = "LABEL_CREATED" LABEL_UPDATED = "LABEL_UPDATED" LABEL_DELETED = "LABEL_DELETED" updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") url = Field.String("url") topics = Field.String("topics") status = Field.String("status") @staticmethod def create(client, topics, url, secret, project): """ Creates a Webhook. Args: client (Client): The Labelbox client used to connect to the server. topics (list of str): A list of topics this Webhook should get notifications for. url (str): The URL to which notifications should be sent by the Labelbox server. secret (str): A secret key used for signing notifications. project (Project or None): The project for which notifications should be sent. If None notifications are sent for all events in your organization. Returns: A newly created Webhook. """ project_str = "" if project is None \ else ("project:{id:\"%s\"}," % project.uid) query_str = """mutation CreateWebhookPyApi { createWebhook(data:{%s topics:{set:[%s]}, url:"%s", secret:"%s" }){%s} } """ % (project_str, " ".join(topics), url, secret, query.results_query_part(Entity.Webhook)) return Webhook(client, client.execute(query_str)["createWebhook"]) created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization") project = Relationship.ToOne("Project") def update(self, topics=None, url=None, status=None): """ Updates this Webhook. Args: topics (list of str): The new topics value, optional. url (str): The new URL value, optional. status (str): The new status value, optional. """ # Webhook has a custom `update` function due to custom types # in `status` and `topics` fields. topics_str = "" if topics is None \ else "topics: {set: [%s]}" % " ".join(topics) url_str = "" if url is None else "url: \"%s\"" % url status_str = "" if status is None else "status: %s" % status query_str = """mutation UpdateWebhookPyApi { updateWebhook(where: {id: "%s"} data:{%s}){%s}} """ % ( self.uid, ", ".join(filter(None, (topics_str, url_str, status_str))), query.results_query_part(Entity.Webhook)) self._set_field_values(self.client.execute(query_str)["updateWebhook"])
class Webhook(DbObject, Updateable): """ Represents a server-side rule for sending notifications to a web-server whenever one of several predefined actions happens within a context of a Project or an Organization. Attributes: updated_at (datetime) created_at (datetime) url (str) topics (str): LABEL_CREATED, LABEL_UPDATED, LABEL_DELETED REVIEW_CREATED, REVIEW_UPDATED, REVIEW_DELETED status (str): ACTIVE, INACTIVE, REVOKED """ class Status(Enum): ACTIVE = "ACTIVE" INACTIVE = "INACTIVE" REVOKED = "REVOKED" class Topic(Enum): LABEL_CREATED = "LABEL_CREATED" LABEL_UPDATED = "LABEL_UPDATED" LABEL_DELETED = "LABEL_DELETED" REVIEW_CREATED = "REVIEW_CREATED" REVIEW_UPDATED = "REVIEW_UPDATED" REVIEW_DELETED = "REVIEW_DELETED" # For backwards compatibility for topic in Status: vars()[topic.name] = topic.value for status in Topic: vars()[status.name] = status.value updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") url = Field.String("url") topics = Field.String("topics") status = Field.String("status") created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization") project = Relationship.ToOne("Project") @staticmethod def create(client, topics, url, secret, project): """ Creates a Webhook. Args: client (Client): The Labelbox client used to connect to the server. topics (list of str): A list of topics this Webhook should get notifications for. Must be one of Webhook.Topic url (str): The URL to which notifications should be sent by the Labelbox server. secret (str): A secret key used for signing notifications. project (Project or None): The project for which notifications should be sent. If None notifications are sent for all events in your organization. Returns: A newly created Webhook. Raises: ValueError: If the topic is not one of Topic or status is not one of Status Information on configuring your server can be found here (this is where the url points to and the secret is set). https://docs.labelbox.com/en/configure-editor/webhooks-setup#setup-steps """ Webhook.validate_topics(topics) project_str = "" if project is None \ else ("project:{id:\"%s\"}," % project.uid) query_str = """mutation CreateWebhookPyApi { createWebhook(data:{%s topics:{set:[%s]}, url:"%s", secret:"%s" }){%s} } """ % (project_str, " ".join(topics), url, secret, query.results_query_part(Entity.Webhook)) return Webhook(client, client.execute(query_str)["createWebhook"]) @staticmethod def validate_topics(topics): if isinstance(topics, str) or not isinstance(topics, Iterable): raise TypeError( f"Topics must be List[Webhook.Topic]. Found `{topics}`") for topic in topics: Webhook.validate_value(topic, Webhook.Topic) @staticmethod def validate_value(value, enum): supported_values = {item.value for item in enum} if value not in supported_values: raise ValueError( f"Value `{value}` does not exist in supported values. Expected one of {supported_values}" ) def delete(self): """ Deletes the webhook """ self.update(status=self.Status.INACTIVE) def update(self, topics=None, url=None, status=None): """ Updates the Webhook. Args: topics (Optional[List[Topic]]): The new topics. url Optional[str): The new URL value. status (Optional[Status]): The new status. If an argument is set to None then no updates will be made to that field. """ # Webhook has a custom `update` function due to custom types # in `status` and `topics` fields. if topics is not None: self.validate_topics(topics) if status is not None: self.validate_value(status, self.Status) topics_str = "" if topics is None \ else "topics: {set: [%s]}" % " ".join(topics) url_str = "" if url is None else "url: \"%s\"" % url status_str = "" if status is None else "status: %s" % status query_str = """mutation UpdateWebhookPyApi { updateWebhook(where: {id: "%s"} data:{%s}){%s}} """ % ( self.uid, ", ".join(filter(None, (topics_str, url_str, status_str))), query.results_query_part(Entity.Webhook)) self._set_field_values(self.client.execute(query_str)["updateWebhook"])