def main(): conf = Configs() experiment.create(name='probabilities_fixed_cards') experiment.calculate_configs(conf, {}, ['run']) experiment.add_pytorch_models(dict(model=conf.model)) experiment.start() conf.run()
def main(): conf = Configs() experiment.create(name='who_won') experiment.calculate_configs(conf, {}, ['run']) experiment.add_pytorch_models(dict(model=conf.model)) experiment.start() conf.run()
def main(): conf = Configs() experiment.create(name='mnist_latest') conf.optimizer = 'adam_optimizer' experiment.calculate_configs(conf, {}, ['set_seed', 'run']) experiment.add_pytorch_models(dict(model=conf.model)) experiment.start() conf.run()
def main(): conf = Configs() experiment.create(name='cifar_10', writers={'sqlite'}) conf.optimizer = 'adam_optimizer' experiment.calculate_configs(conf, {}, ['set_seed', 'run']) experiment.add_pytorch_models(dict(model=conf.model)) experiment.start() conf.run()
def search(conf: Configs): tracker.set_global_step(0) experiment.create(name='mnist_hyperparam_tuning') experiment.calculate_configs(conf, {}, ['set_seed', 'run']) experiment.add_pytorch_models(dict(model=conf.model)) experiment.start() conf.run() tracker.reset()
def main(): conf = Configs() experiment.create(name='sklearn', writers={'sqlite'}) experiment.calculate_configs(conf) experiment.add_sklearn_models(dict(model=conf.model)) experiment.start() conf.run() experiment.save_checkpoint()
def main(): conf = Configs() experiment.create(name='mnist_configs', writers={'sqlite'}) conf.optimizer = 'sgd_optimizer' experiment.calculate_configs(conf, {}, ['set_seed', 'loop']) experiment.add_pytorch_models(dict(model=conf.model)) experiment.start() conf.loop()
def main(): conf = Configs() experiment.create(name='configs') experiment.calculate_configs(conf, {'optimizer': 'sgd_optimizer'}, ['set_seed', 'run']) experiment.start() conf.run() # save the model experiment.save_checkpoint()
def main(): conf = Configs() experiment.create(name='Battleship_DQN') experiment.calculate_configs(conf, {}, ['set_seed', 'policy', 'target', 'run']) experiment.add_pytorch_models(dict(model=conf.policy)) experiment.start() conf.run() if conf.is_save_models: experiment.save_checkpoint()
def main(): experiment.create() conf = Configs() conf.learning_rate = 1e-4 conf.epochs = 500 conf.conv_sizes = [(128, 2), (256, 4)] # conf.conv_sizes = [(128, 1), (256, 2)] conf.activation = 'relu' conf.dropout = 0.1 conf.train_batch_size = 32 experiment.calculate_configs(conf, 'run') experiment.start() with tracker.namespace('valid'): conf.valid_dataset.save_artifacts() conf.run()
def main(): conf = Configs() experiment.create(name='test_artifacts', writers={'sqlite'}) experiment.calculate_configs(conf, 'run') experiment.start() conf.run()
def main(): # set indicator types tracker.set_queue("train_loss", 20, True) tracker.set_histogram("valid_loss", True) tracker.set_scalar("valid_accuracy", True) epochs = 10 train_batch_size = 64 test_batch_size = 1000 use_cuda = True cuda_device = 0 seed = 5 train_log_interval = 10 learning_rate = 0.01 # get device is_cuda = use_cuda and torch.cuda.is_available() if not is_cuda: device = torch.device("cpu") else: if cuda_device < torch.cuda.device_count(): device = torch.device(f"cuda:{cuda_device}") else: print(f"Cuda device index {cuda_device} higher than " f"device count {torch.cuda.device_count()}") device = torch.device(f"cuda:{torch.cuda.device_count() - 1}") # data transform data_transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))]) # train loader train_loader = torch.utils.data.DataLoader(datasets.MNIST( str(lab.get_data_path()), train=True, download=True, transform=data_transform), batch_size=train_batch_size, shuffle=True) # test loader test_loader = torch.utils.data.DataLoader(datasets.MNIST( str(lab.get_data_path()), train=False, download=True, transform=data_transform), batch_size=test_batch_size, shuffle=False) # model model = Net().to(device) # optimizer optimizer = optim.Adam(model.parameters(), lr=learning_rate) # set seeds torch.manual_seed(seed) # only for logging purposes configs = { 'epochs': epochs, 'train_batch_size': train_batch_size, 'test_batch_size': test_batch_size, 'use_cuda': use_cuda, 'cuda_device': cuda_device, 'seed': seed, 'train_log_interval': train_log_interval, 'learning_rate': learning_rate, 'device': device, 'train_loader': train_loader, 'test_loader': test_loader, 'model': model, 'optimizer': optimizer, } # create the experiment experiment.create(name='tracker') # experiment configs experiment.calculate_configs(configs) # pyTorch model experiment.add_pytorch_models(dict(model=model)) experiment.start() # training loop for epoch in range(1, epochs + 1): train(model, optimizer, train_loader, device, train_log_interval) test(model, test_loader, device) logger.log() # save the model experiment.save_checkpoint()
def main(): conf = Configs() experiment.create(name='mnist_gan', writers={'sqlite'}) experiment.calculate_configs(conf, {}, ['set_seed', 'main']) experiment.start() conf.main()
def main(): conf = Configs() experiment.create(name='rnn', writers={'sqlite', 'tensorboard'}) experiment.calculate_configs(conf, {}, run_order=['set_seed', 'main']) experiment.start() conf.main()