from deeplab import train, eval, vis, export_model from sacred import Experiment from labwatch.assistant import LabAssistant from labwatch.optimizers import RandomSearch import os ex = Experiment() a = LabAssistant(experiment=ex, database_name="labwatch", optimizer=RandomSearch) @ex.config def config(): num_iterations = 100 train_batch_size = 4 model_variants = "xception_65" atrous_rates_0 = 6 atrous_rates_1 = 12 atrous_rates_2 = 18 output_stride = 16 decoder_output_stride = 4 crop_size = "42, 42" fine_tune_batch_norm = True exp_id = 0 OM_DIR = "/om/user/amineh/exp/exp_id" INIT_DIR = "${OM_DIR}/deeplabv3_pascal_trainval/model.ckpt" TRAIN_LOGDIR = "${OM_DIR}/train" VIS_LOGDIR = "${OM_DIR}/vis"
import sacred from sacred.stflow import LogFileWriter from labwatch.assistant import LabAssistant from labwatch.optimizers import RandomSearch from labwatch.hyperparameters import UniformFloat, UniformNumber from tensorflow.examples.tutorials.mnist import input_data from hyperparam_opt.tensorflow.dnn_mnist import HyperParams, train ex = sacred.Experiment(name='MINST') a = LabAssistant(ex, database_name='labwatch-db', optimizer=RandomSearch) @ex.config def cfg(): lr = 0.001 batch_size = 100 n_hidden = 32 keep_prob = 0.5 data_dir = '../../data/tmp/mnist/' log_dir = './logs/' @a.search_space def search_space(): lr = UniformFloat(0.0001, 0.01, default=0.001, log_scale=True) batch_size = UniformNumber(8, 256, default=100, type=int)
from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D from keras import backend as K from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping, TensorBoard import os, os.path import sys from sacred import Experiment from sacred.observers import MongoObserver from labwatch.assistant import LabAssistant from labwatch.optimizers.random_search import RandomSearch from labwatch.hyperparameters import UniformNumber, UniformFloat ex = Experiment() a = LabAssistant(ex, optimizer=RandomSearch) @a.search_space def search_space(): num_units_first_dense = UniformNumber(lower=950, upper=1450, default=1024, type=int, log_scale=True) num_units_second_dense = UniformNumber(lower=900, upper=1600, default=1024, type=int, log_scale=True) dropout_rate = UniformFloat(lower=.33, upper=.55, default=.45)
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals from sacred import Experiment from labwatch.assistant import LabAssistant from labwatch.hyperparameters import UniformFloat import numpy as np ex = Experiment() a = LabAssistant(ex) @ex.config def cfg(): x = (0., 5.) @a.search_space def search_space(): x = (UniformFloat(-5, 10), UniformFloat(0, 15)) @ex.automain def branin(x): x1, x2 = x print("{:.2f}, {:.2f}".format(x1, x2)) y = (x2 - (5.1 / (4 * np.pi ** 2)) * x1 ** 2 + 5 * x1 / np.pi - 6) ** 2 y += 10 * (1 - 1 / (8 * np.pi)) * np.cos(x1) + 10
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals from labwatch.optimizers.random_search import RandomSearch from sacred import Experiment from labwatch.assistant import LabAssistant from labwatch.hyperparameters import UniformFloat import numpy as np ex = Experiment() a = LabAssistant(ex, database_name='branin', optimizer=RandomSearch) @ex.config def cfg(): x = (0., 5.) @a.search_space def search_space(): x = (UniformFloat(-5, 10), UniformFloat(0, 15)) @ex.automain def branin(x): x1, x2 = x print("{:.2f}, {:.2f}".format(x1, x2)) y = (x2 - (5.1 / (4 * np.pi**2)) * x1**2 + 5 * x1 / np.pi - 6)**2 y += 10 * (1 - 1 / (8 * np.pi)) * np.cos(x1) + 10
from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop from sacred import Experiment from labwatch.assistant import LabAssistant from labwatch.hyperparameters import UniformInt, UniformFloat from labwatch.optimizers.random_search import RandomSearch ex = Experiment() a = LabAssistant(ex, "labwatch_demo_keras", optimizer=RandomSearch) @ex.config def cfg(): batch_size = 128 num_units_first_layer = 512 num_units_second_layer = 512 dropout_first_layer = 0.2 dropout_second_layer = 0.2 learning_rate = 0.001 @a.search_space def small_search_space(): batch_size = UniformInt(lower=32, upper=64, default=32, log_scale=True) learning_rate = UniformFloat(lower=10e-3,