# You should have received a copy of the GNU General Public License # along with Ladybug; If not, see <http://www.gnu.org/licenses/>. # # @license GPL-3.0+ <http://spdx.org/licenses/GPL-3.0+> """ Use this component to generate colors based on values and legend parameters. - Args: _values: A numerical data set. legend_par_: Optional legend parameters from the Ladybug Legend Parameters component. Returns: colors: The colors associated with each input value. """ ghenv.Component.Name = "LadybugPlus_Generate Colors" ghenv.Component.NickName = 'genColors' ghenv.Component.Message = 'VER 0.0.04\nOCT_14_2018' ghenv.Component.Category = "LadybugPlus" ghenv.Component.SubCategory = "03 :: Extra" ghenv.Component.AdditionalHelpFromDocStrings = "2" try: import ladybug.legendparameters as lpar import ladybug.dotnet as dotnet except ImportError as e: raise ImportError('\nFailed to import ladybug:\n\t{}'.format(e)) if _values: legend_par = legend_par_ or lpar.LegendParameters() colors = dotnet.color_to_color(legend_par.calculate_colors(_values))
# assign inputs _analysisGrid, blindStates_, _occSchedule_, _threshold_, _targetHrs_, _targetArea_ = IN success = ASE = perArea = prblmPts = prblmHrs = legendPar = None try: import ladybug.geometry as lg import ladybug.output as output import ladybug.legendparameters as lp import ladybug.color as color except ImportError as e: raise ImportError('\nFailed to import ladybug:\n\t{}'.format(e)) col = color.Colorset.original() legendPar = lp.LegendParameters((0, 250), colors=col) if _analysisGrid: states = _analysisGrid.parse_blind_states(blindStates_) success, ASE, perArea, prblmPts, prblmHrs = _analysisGrid.annual_solar_exposure( _threshold_, states, _occSchedule_, _targetHrs_, _targetArea_ ) prblmPts = (lg.point(s.location.x, s.location.y, s.location.z) for s in prblmPts) # convert list of lists to data tree try: prblmHrs = output.list_to_tree(prblmHrs, ghenv.Component.RunCount - 1) except NameError: # dynamo pass # assign outputs to OUT
Args: _domain_: A number representing the higher boundary of the legend's numerical range. The default is set to the highest value of the data stream that the legend refers to. _cType_: _colors_: A list of colors that will be used to re-color the legend and the corresponding colored mesh(es). The number of colors input here should match the numSegments_ value input above. An easy way to generate a list of colors to input here is with the Grasshopper "Gradient" component and a Grasshopper "Series" component connected to the Gradient component's "t" input. A bunch of Grasshopper "Swatch" components is another way to generate a list of custom colors. The default colors are a gradient spectrum from blue to yellow to red. Returns: legendPar: A legend parameters to be plugged into any of the Ladybug components with a legend. """ ghenv.Component.Name = "LadybugPlus_Legend Parameters" ghenv.Component.NickName = 'legendPar' ghenv.Component.Message = 'VER 0.0.01\nJUL_21_2017' ghenv.Component.Category = "LadybugPlus" ghenv.Component.SubCategory = "3 :: Extra" ghenv.Component.AdditionalHelpFromDocStrings = "2" try: import ladybug.legendparameters as lpar import ladybug.color as col except ImportError as e: raise ImportError('\nFailed to import ladybug:\n\t{}'.format(e)) # TODO: Add color convertor to [+] if _colors_: pass # colors = tuple(col.ColorConvertor.toLBColor(_colors_)) legendPar = lpar.LegendParameters(legendRange=_domain_, numberOfSegments=11, colors=_colors_, chartType=_cType_)
This component particularly helpful in making the colors of Ladybug graphics consistent for a presentation or for synchonizing the numerical range and colors between Ladybug graphics. - Args: _domain_: A number representing the higher boundary of the legend's numerical range. The default is set to the highest value of the data stream that the legend refers to. _c_type_: _colors_: A list of colors that will be used to re-color the legend and the corresponding colored mesh(es). The number of colors input here should match the numSegments_ value input above. An easy way to generate a list of colors to input here is with the Grasshopper "Gradient" component and a Grasshopper "Series" component connected to the Gradient component's "t" input. A bunch of Grasshopper "Swatch" components is another way to generate a list of custom colors. The default colors are a gradient spectrum from blue to yellow to red. Returns: legend_par: A legend parameters to be plugged into any of the Ladybug components with a legend. """ ghenv.Component.Name = "LadybugPlus_Legend Parameters" ghenv.Component.NickName = 'legendPar' ghenv.Component.Message = 'VER 0.0.04\nOCT_14_2018' ghenv.Component.Category = "LadybugPlus" ghenv.Component.SubCategory = "03 :: Extra" ghenv.Component.AdditionalHelpFromDocStrings = "2" try: import ladybug.legendparameters as lpar import ladybug.color as col except ImportError as e: raise ImportError('\nFailed to import ladybug:\n\t{}'.format(e)) legend_par = lpar.LegendParameters( legend_range=_domain_, number_of_segments=11, colors=_colors_, chart_type=_c_type_ )
recieves equal or more than the threshold. CDA: Continuous daylight autonomy. UDI: Useful daylight illuminance. The percentage of time that illuminace falls between minimum and maximum thresholds. UDI_less: The percentage of time that illuminace falls less than minimum threshold. UDI_more: The percentage of time that illuminace falls more than maximum threshold. legend_par: Suggested legend parameters for annual metrics. """ ghenv.Component.Name = "HoneybeePlus_Annual Daylight Metrics" ghenv.Component.NickName = 'annualMetrics' ghenv.Component.Message = 'VER 0.0.05\nOCT_22_2018' ghenv.Component.Category = "HoneybeePlus" ghenv.Component.SubCategory = '04 :: Daylight :: Daylight' ghenv.Component.AdditionalHelpFromDocStrings = "3" try: import ladybug.legendparameters as lp import ladybug.color as color except ImportError as e: raise ImportError('\nFailed to import ladybug:\n\t{}'.format(e)) col = color.Colorset.nuanced() legend_par = lp.LegendParameters((0, 100), colors=col) if _analysis_grid: states = _analysis_grid.parse_blind_states(blind_states_) DA, CDA, UDI, UDI_less, UDI_more = _analysis_grid.annual_metrics( _threshold_, _min_max_, states, _occ_schedule_)