def parse_psd_file(filestr, fvals):
    """
    Map the user-provided PSD file string into a function to be called as PSD(f).
    """ 
  
    if not os.path.isfile(filestr):
        try:
            psd_func = getattr(lalsimulation, filestr)
            return numpy.array(map(psd_func, fvals))
        except AttributeError:
            pass

    try:
        xmldoc = utils.load_filename(filestr, contenthandler=PSDContentHandler)
        psd = read_psd_xmldoc(xmldoc).values()[0]
        f = numpy.arange(0, len(psd.data)*psd.deltaF, psd.deltaF)
        psd = psd.data
    except:
        # FIXME: ugh!
        try:
            f, psd = numpy.loadtxt(filestr, unpack=True)
        except:
           exit("Can't parse PSD specifier %s as function or file." % filestr)

    def anon_interp(newf):
        return numpy.interp(newf, f, psd)
    return numpy.array(map(anon_interp, fvals))
示例#2
0
def parse_psd_file(filestr, fvals):
    """
    Map the user-provided PSD file string into a function to be called as PSD(f).
    """

    if not os.path.isfile(filestr):
        try:
            psd_func = getattr(lalsimulation, filestr)
            return numpy.array(map(psd_func, fvals))
        except AttributeError:
            pass

    try:
        xmldoc = utils.load_filename(filestr, contenthandler=PSDContentHandler)
        psd = read_psd_xmldoc(xmldoc).values()[0]
        f = numpy.arange(0, len(psd.data) * psd.deltaF, psd.deltaF)
        psd = psd.data
    except:
        # FIXME: ugh!
        try:
            f, psd = numpy.loadtxt(filestr, unpack=True)
        except:
            exit("Can't parse PSD specifier %s as function or file." % filestr)

    def anon_interp(newf):
        return numpy.interp(newf, f, psd)

    return numpy.array(map(anon_interp, fvals))
示例#3
0
    def do_test(self, n_ifos, n_ifos_followup):
        # choose a random selection of interferometers
        # n_ifos will be used to generate the simulated trigger
        # n_ifos_followup will be used as followup-only
        all_ifos = random.sample(self.possible_ifos, n_ifos + n_ifos_followup)
        trig_ifos = all_ifos[0:n_ifos]

        results = {
            'foreground/stat': np.random.uniform(4, 20),
            'foreground/ifar': np.random.uniform(0.01, 1000)
        }
        followup_data = {}
        for ifo in all_ifos:
            offset = 10000 + np.random.uniform(-0.02, 0.02)
            amplitude = np.random.uniform(4, 20)

            # generate a mock SNR time series with a peak
            n = 201
            dt = 1. / 2048.
            t = np.arange(n) * dt
            t_peak = dt * n / 2
            snr = np.exp(-(t - t_peak)**2 * 3e-3**-2) * amplitude
            snr_series = TimeSeries((snr + 1j * 0).astype(np.complex64),
                                    delta_t=dt,
                                    epoch=offset)

            # generate a mock PSD
            psd_samples = np.random.exponential(size=1024)
            psd = FrequencySeries(psd_samples, delta_f=1.)

            # fill in the various fields
            if ifo in trig_ifos:
                base = 'foreground/' + ifo + '/'
                results[base + 'end_time'] = t_peak + offset
                results[base + 'snr'] = amplitude
                results[base + 'sigmasq'] = np.random.uniform(1e6, 2e6)
            followup_data[ifo] = {'snr_series': snr_series, 'psd': psd}

        for ifo, k in itertools.product(trig_ifos, self.template):
            results['foreground/' + ifo + '/' + k] = self.template[k]

        kwargs = {
            'psds': {ifo: followup_data[ifo]['psd']
                     for ifo in all_ifos},
            'low_frequency_cutoff': 20.,
            'followup_data': followup_data
        }
        coinc = SingleCoincForGraceDB(trig_ifos, results, **kwargs)

        tempdir = tempfile.mkdtemp()

        coinc_file_name = os.path.join(tempdir, 'coinc.xml.gz')

        if GraceDb is not None:
            # pretend to upload the event to GraceDB.
            # The upload will fail, but it should not raise an exception
            # and it should still leave the event file around
            coinc.upload(coinc_file_name,
                         gracedb_server='localhost',
                         testing=True)
        else:
            # no GraceDb module, so just save the coinc file
            coinc.save(coinc_file_name)

        # read back and check the coinc document
        read_coinc = ligolw_utils.load_filename(coinc_file_name,
                                                verbose=False,
                                                contenthandler=ContentHandler)
        single_table = table.get_table(read_coinc,
                                       lsctables.SnglInspiralTable.tableName)
        self.assertEqual(len(single_table), len(all_ifos))
        coinc_table = table.get_table(read_coinc,
                                      lsctables.CoincInspiralTable.tableName)
        self.assertEqual(len(coinc_table), 1)

        # make sure lalseries can read the PSDs
        psd_doc = ligolw_utils.load_filename(
            coinc_file_name,
            verbose=False,
            contenthandler=lalseries.PSDContentHandler)
        psd_dict = lalseries.read_psd_xmldoc(psd_doc)
        self.assertEqual(set(psd_dict.keys()), set(all_ifos))

        shutil.rmtree(tempdir)
        Psig.copy_lsctables_sim_inspiral(sim_inspiral_table[opts.event_id])

        data_fake_dict = {}
        psd_dict = {}
        rhoFake = {}
        fminSNR = opts.fmin_SNR
        fmaxSNR = opts.fmax_SNR
        fSample = opts.srate
        fNyq = fSample / 2.
        rho2Net = 0
        # Insure signal duration and hence frequency spacing specified
        Psig.deltaF = lalsimutils.findDeltaF(Psig)

        if opts.psd_file is not None:
            xmldoc = utils.load_filename(opts.psd_file)
            psd_dict = read_psd_xmldoc(xmldoc)

            # Remove unwanted PSDs
            if opts.channel_name is not None:
                dets = common_cl.parse_cl_key_value(opts.channel_name).keys()
                for det in psd_dict.keys():
                    if det not in dets:
                        del psd_dict[det]

        else:
            psd_dict = common_cl.parse_cl_key_value(opts.psd_file_singleifo)
            for det, psdf in psd_dict.items():
                psd_dict[det] = lalsimutils.get_psd_series_from_xmldoc(
                    psdf, det)
        """
        # FIXME: Reenable with ability to parse out individual PSD functions from
示例#5
0
    def do_test(self, n_ifos, n_ifos_followup):
        # choose a random selection of interferometers
        # n_ifos will be used to generate the simulated trigger
        # n_ifos_followup will be used as followup-only
        all_ifos = random.sample(self.possible_ifos, n_ifos + n_ifos_followup)
        trig_ifos = all_ifos[0:n_ifos]

        results = {'foreground/stat': np.random.uniform(4, 20),
                   'foreground/ifar': np.random.uniform(0.01, 1000)}
        followup_data = {}
        for ifo in all_ifos:
            offset = 10000 + np.random.uniform(-0.02, 0.02)
            amplitude = np.random.uniform(4, 20)

            # generate a mock SNR time series with a peak
            n = 201
            dt = 1. / 2048.
            t = np.arange(n) * dt
            t_peak = dt * n / 2
            snr = np.exp(-(t - t_peak) ** 2 * 3e-3 ** -2) * amplitude
            snr_series = TimeSeries((snr + 1j * 0).astype(np.complex64),
                                    delta_t=dt, epoch=offset)

            # generate a mock PSD
            psd_samples = np.random.exponential(size=1024)
            psd = FrequencySeries(psd_samples, delta_f=1.)

            # fill in the various fields
            if ifo in trig_ifos:
                base = 'foreground/' + ifo + '/'
                results[base + 'end_time'] = t_peak + offset
                results[base + 'snr'] = amplitude
                results[base + 'sigmasq'] = np.random.uniform(1e6, 2e6)
            followup_data[ifo] = {'snr_series': snr_series,
                                  'psd': psd}

        for ifo, k in itertools.product(trig_ifos, self.template):
            results['foreground/' + ifo + '/' + k] = self.template[k]

        channel_names = {ifo: 'TEST' for ifo in all_ifos}
        kwargs = {'psds': {ifo: followup_data[ifo]['psd'] for ifo in all_ifos},
                  'low_frequency_cutoff': 20.,
                  'followup_data': followup_data,
                  'channel_names': channel_names}
        coinc = SingleCoincForGraceDB(trig_ifos, results, **kwargs)

        tempdir = tempfile.mkdtemp()

        coinc_file_name = os.path.join(tempdir, 'coinc.xml.gz')

        if GraceDb is not None:
            # pretend to upload the event to GraceDB.
            # The upload will fail, but it should not raise an exception
            # and it should still leave the event file around
            coinc.upload(coinc_file_name, gracedb_server='localhost',
                         testing=True)
        else:
            # no GraceDb module, so just save the coinc file
            coinc.save(coinc_file_name)

        # read back and check the coinc document
        read_coinc = ligolw_utils.load_filename(
                coinc_file_name, verbose=False, contenthandler=ContentHandler)
        single_table = table.get_table(
                read_coinc, lsctables.SnglInspiralTable.tableName)
        self.assertEqual(len(single_table), len(all_ifos))
        coinc_table = table.get_table(
                read_coinc, lsctables.CoincInspiralTable.tableName)
        self.assertEqual(len(coinc_table), 1)

        # make sure lalseries can read the PSDs
        psd_doc = ligolw_utils.load_filename(
                coinc_file_name, verbose=False,
                contenthandler=lalseries.PSDContentHandler)
        psd_dict = lalseries.read_psd_xmldoc(psd_doc)
        self.assertEqual(set(psd_dict.keys()), set(all_ifos))

        shutil.rmtree(tempdir)
def getSamples(graceid,
               mass1,
               mass2,
               chi1,
               network_snr,
               samples,
               PSD,
               fmin=30,
               NMcs=5,
               NEtas=5,
               NChis=5,
               mass1_cut=5.0,
               chi1_cut=0.05,
               lowMass_approx='lalsim.SpinTaylorT4',
               highMass_approx='lalsim.IMRPhenomPv2',
               Forced=False,
               logFile=False,
               saveData=False,
               plot=False,
               path=False,
               show=False):
    m1_SI = mass1 * lal.MSUN_SI
    m2_SI = mass2 * lal.MSUN_SI
    #     min_mc_factor, max_mc_factor = 0.9, 1.1
    min_mc_factor, max_mc_factor = 0.98, 1.02
    min_eta, max_eta = 0.05, 0.25
    min_chi1, max_chi1 = -0.99, 0.99

    # Control evaluation of the effective Fisher grid
    #     NMcs = 10
    #     NEtas = 10
    #     NChis = 10

    # match_cntr = 0.9 # Fill an ellipsoid of match = 0.9
    bank_min_match = 0.97
    match_cntr = np.min(
        [np.max([0.9, 1 - 9.2 / 2 / network_snr**2]),
         bank_min_match])  ## Richard's suggestion
    #     wide_match = 1 - (1 - match_cntr)**(2/3.0)
    wide_match = match_cntr * 0.8  ### Richard's suggestion
    fit_cntr = match_cntr  # Do the effective Fisher fit with pts above this match
    Nrandpts = samples  # Requested number of pts to put inside the ellipsoid

    template_min_freq = fmin  ### This needs to be discussed
    ip_min_freq = fmin  ### This needs to be discussed
    lambda1, lambda2 = 0, 0

    #
    # Setup signal and IP class
    #
    param_names = ['Mc', 'eta', 'spin1z']
    McSIG = lsu.mchirp(m1_SI, m2_SI)
    etaSIG = lsu.symRatio(m1_SI, m2_SI)
    chiSIG = chi1

    if logFile:
        log = open(logFile, 'a')  ### Generate log file

    if Forced + (mass1 > mass1_cut) * (
            chi1 > chi1_cut
    ):  ## If forced to use the IMR waveform, or if the mass2 and spin1z values are above the cut.
        if logFile:
            log.writelines(
                str(datetime.datetime.today()) + '\t' +
                'Using IMRPhenomPv2 approximation.' + '\n')
        else:
            print 'Using IMRPhenomPv2 approximation.'

        PSIG = lsu.ChooseWaveformParams(m1=m1_SI,
                                        m2=m2_SI,
                                        spin1z=chi1,
                                        lambda1=lambda1,
                                        lambda2=lambda2,
                                        fmin=template_min_freq,
                                        approx=eval(highMass_approx))

    else:
        if logFile:
            log.writelines(
                str(datetime.datetime.today()) + '\t' +
                'Using SpinTaylorT4 approximation.' + '\n')
        else:
            print 'Using SpinTaylorT4 approximation.'

        PSIG = lsu.ChooseWaveformParams(m1=m1_SI,
                                        m2=m2_SI,
                                        spin1z=chi1,
                                        lambda1=lambda1,
                                        lambda2=lambda2,
                                        fmin=template_min_freq,
                                        approx=eval(lowMass_approx))

    # Find a deltaF sufficient for entire range to be explored
    PTEST = PSIG.copy()

    # Check the waveform generated in the corners for the
    # longest possible waveform
    PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG * min_mc_factor, min_eta)
    deltaF_1 = lsu.findDeltaF(PTEST)
    PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG * min_mc_factor, max_eta)
    deltaF_2 = lsu.findDeltaF(PTEST)
    # set deltaF accordingly
    PSIG.deltaF = min(deltaF_1, deltaF_2)

    PTMPLT = PSIG.copy()

    psd_map = common_cl.parse_cl_key_value(PSD)
    for inst, psdfile in psd_map.items():
        if psd_map.has_key(psdfile):
            psd_map[psdfile].add(inst)
        else:
            psd_map[psdfile] = set([inst])
        del psd_map[inst]

    for psdf, insts in psd_map.iteritems():
        xmldoc = utils.load_filename(psdf,
                                     contenthandler=series.PSDContentHandler)
        # FIXME: How to handle multiple PSDs
        for inst in insts:
            psd = series.read_psd_xmldoc(xmldoc, root_name=None)[inst]
            psd_f_high = len(psd.data.data) * psd.deltaF
            f = np.arange(0, psd_f_high, psd.deltaF)
            fvals = np.arange(0, psd_f_high, PSIG.deltaF)
            eff_fisher_psd = np.interp(fvals, f, psd.data.data)

    analyticPSD_Q = False

    freq_upper_bound = np.min(
        [2000.0, (psd.data.length) * (psd.deltaF) * 0.98])
    print 'freq_upper_bound = ' + str(freq_upper_bound)
    IP = lsu.Overlap(fLow=ip_min_freq,
                     fMax=freq_upper_bound,
                     deltaF=PSIG.deltaF,
                     psd=eff_fisher_psd,
                     analyticPSD_Q=analyticPSD_Q)

    hfSIG = lsu.norm_hoff(PSIG, IP)

    # Find appropriate parameter ranges
    min_mc = McSIG * min_mc_factor
    max_mc = McSIG * max_mc_factor
    param_ranges = eff.find_effective_Fisher_region(
        PSIG, IP, wide_match, param_names,
        [[min_mc, max_mc], [min_eta, max_eta], [min_chi1, max_chi1]])

    # setup uniform parameter grid for effective Fisher
    pts_per_dim = [NMcs, NEtas, NChis]

    Mcpts, etapts, chipts = eff.make_regular_1d_grids(param_ranges,
                                                      pts_per_dim)
    etapts = map(lsu.sanitize_eta, etapts)
    McMESH, etaMESH, chiMESH = eff.multi_dim_meshgrid(Mcpts, etapts, chipts)
    McFLAT, etaFLAT, chiFLAT = eff.multi_dim_flatgrid(Mcpts, etapts, chipts)
    dMcMESH = McMESH - McSIG
    detaMESH = etaMESH - etaSIG
    dchiMESH = chiMESH - chiSIG
    dMcFLAT = McFLAT - McSIG
    detaFLAT = etaFLAT - etaSIG
    dchiFLAT = chiFLAT - chiSIG

    grid = eff.multi_dim_grid(Mcpts, etapts, chipts)

    # Change units on Mc
    dMcFLAT_MSUN = dMcFLAT / lal.MSUN_SI
    dMcMESH_MSUN = dMcMESH / lal.MSUN_SI
    McMESH_MSUN = McMESH / lal.MSUN_SI
    McSIG_MSUN = McSIG / lal.MSUN_SI

    # Evaluate ambiguity function on the grid
    rhos = np.array(
        eff.evaluate_ip_on_grid(hfSIG, PTMPLT, IP, param_names, grid))
    rhogrid = rhos.reshape(NMcs, NEtas, NChis)

    # Fit to determine effective Fisher matrix
    # Adapt the match value to make sure all the Evals are positive
    gam_prior = np.diag(
        [10. * 10., 4 * 4., 1.]
    )  # prior on mass, eta, chi.  (the 'prior' on mass is mainly used to regularize, and is too narrow)
    evals = np.array([-1, -1, -1])
    count = 0
    start = time.time()
    match_cntrs = np.array([0.97, 0.98, 0.99])
    while np.any(
            np.array([np.real(evals[0]),
                      np.real(evals[1]),
                      np.real(evals[2])]) < 0):
        if count > 0:
            if logFile:
                log.writelines(
                    str(datetime.datetime.today()) + '\t' +
                    'At least one of the eval is negative: switching to match of '
                    + str(match_cntrs[count]) + '\n')
            else:
                print 'At least one of the eval is negative: switching to match of ' + str(
                    match_cntrs[count])
        wide_match = 1 - (1 - match_cntrs[count])**(2 / 3.0)
        fit_cntr = match_cntrs[
            count]  # Do the effective Fisher fit with pts above this match
        cut = rhos > fit_cntr
        if np.sum(cut) >= 6:
            fitgamma = eff.effectiveFisher(eff.residuals3d, rhos[cut],
                                           dMcFLAT_MSUN[cut], detaFLAT[cut],
                                           dchiFLAT[cut])
            # Find the eigenvalues/vectors of the effective Fisher matrix
            gam = eff.array_to_symmetric_matrix(fitgamma)
            gam = gam + gam_prior
            evals, evecs, rot = eff.eigensystem(gam)
            count += 1
            if (count >= 3) and np.any(
                    np.array([
                        np.real(evals[0]),
                        np.real(evals[1]),
                        np.real(evals[2])
                    ]) < 0):
                return adapt_failure(logFile)
                sys.exit()
        else:
            return adapt_failure(logFile)
            sys.exit()

    #
    # Distribute points inside predicted ellipsoid of certain level of overlap
    #
    r1 = np.sqrt(2. * (1. - match_cntr) /
                 np.real(evals[0]))  # ellipse radii ...
    r2 = np.sqrt(2. * (1. - match_cntr) /
                 np.real(evals[1]))  # ... along eigen-directions
    r3 = np.sqrt(2. * (1. - match_cntr) /
                 np.real(evals[2]))  # ... along eigen-directions
    ### CHECK ### Should we not use the updated match_cntr value? This seems to be a bug ###

    NN = 0
    NN_total = 0
    cart_grid = [[0., 0., 0.]]
    sph_grid = [[0., 0., 0.]]
    likelihood_grid = [1.]  ## Koh Ueno added

    while NN < Nrandpts:
        NN_total += 1
        r = np.random.rand()
        ph = np.random.rand() * 2. * np.pi
        costh = np.random.rand() * 2. - 1.
        sinth = np.sqrt(1. - costh * costh)
        th = np.arccos(costh)
        rrt = r**(1. / 3.)
        x1 = r1 * rrt * sinth * np.cos(ph)
        x2 = r2 * rrt * sinth * np.sin(ph)
        x3 = r3 * rrt * costh

        ### CHECK ####
        cart_grid_point = [x1, x2, x3]
        cart_grid_point = np.array(np.real(np.dot(rot, cart_grid_point)))

        rand_Mc = cart_grid_point[0] * lal.MSUN_SI + McSIG  # Mc (kg)
        rand_eta = cart_grid_point[1] + etaSIG  # eta
        rand_chi = cart_grid_point[2] + chiSIG
        ### CHECK ####

        ### Koh Ueno: I added the followings to introduce the correct weight for each sample.
        ### I think we can do this computation only after "if joint_condition"
        ### if you want to make the computational cost as small as possible.
        ### I am wondering if we can use the modified "gam"
        ###  (i.e., the gam which gam_prior is added to)
        ### for the likelihood computation.
        diff_rand_sample = [(rand_Mc - McSIG) / lal.MSUN_SI, rand_eta - etaSIG,
                            rand_chi - chiSIG]
        likelihood_tmp = np.dot(np.dot(gam, diff_rand_sample),
                                diff_rand_sample)
        likelihood = np.exp(-0.5 * network_snr**2 * likelihood_tmp.item(0))
        ### Koh Ueno: ends

        condition1 = rand_eta > 0
        condition2 = rand_eta <= 0.25
        condition3 = np.abs(rand_chi) < 1.0
        joint_condition = condition1 * condition2 * condition3
        if joint_condition:
            cart_grid.append(
                [cart_grid_point[0], cart_grid_point[1],
                 cart_grid_point[2]])  ## CHECK
            likelihood_grid.append(likelihood)  ### Koh Ueno added
            NN += 1
    cart_grid = np.array(cart_grid)
    sph_grid = np.array(sph_grid)
    likelihood_grid = np.array(likelihood_grid)

    if logFile:
        log.writelines(
            str(datetime.datetime.today()) + '\t' + 'Selected ' + str(NN) +
            ' points from ' + str(NN_total) +
            ' random samples within the ellipsoid \n')
    else:
        print 'Selected ' + str(NN) + ' points from ' + str(
            NN_total) + ' random samples within the ellipsoid'

    # Rotate to get coordinates in parameter basis
    ### CHECK! No need to rotate again ###


#     cart_grid = np.array([ np.real( np.dot(rot, cart_grid[i]))
#         for i in xrange(len(cart_grid)) ])
# Put in convenient units,
# change from parameter differential (i.e. dtheta)
# to absolute parameter value (i.e. theta = theta_true + dtheta)
    rand_dMcs_MSUN, rand_detas, rand_dChis = tuple(
        np.transpose(cart_grid))  # dMc, deta, dchi
    rand_Mcs = rand_dMcs_MSUN * lal.MSUN_SI + McSIG  # Mc (kg)
    rand_etas = rand_detas + etaSIG  # eta
    rand_chis = rand_dChis + chiSIG

    # Prune points with unphysical values of eta from cart_grid
    rand_etas = np.array(
        map(partial(lsu.sanitize_eta, exception=np.NAN), rand_etas))
    cart_grid = np.transpose((rand_Mcs, rand_etas, rand_chis))  #### CHECK ####
    phys_cut = ~np.isnan(cart_grid).any(1)  # cut to remove unphysical pts
    cart_grid = cart_grid[phys_cut]
    keep_phys_spins = np.abs(cart_grid[:, 2]) < 1.0  #### CHECK ####
    cart_grid = cart_grid[keep_phys_spins]  #### CHECK ####

    # Output Cartesian and spherical coordinates of intrinsic grid
    indices = np.arange(len(cart_grid))
    Mcs_MSUN, etas, chis = np.transpose(cart_grid)  #### CHECK ####
    Mcs_MSUN = Mcs_MSUN / lal.MSUN_SI
    outgrid = np.transpose((Mcs_MSUN, etas, chis))  #### CHECK ####

    if saveData:
        if path: data_dir = path + '/intrinsic_grids'
        else: data_dir = 'intrinsic_grids'
        os.system('mkdir -p ' + data_dir)
        np.savetxt(data_dir + '/intrinsic_grid_' + str(graceid) +
                   '_samples.dat',
                   outgrid,
                   fmt='%f\t%f\t%f')

    if plot:
        import pylab as pl
        from mpl_toolkits.mplot3d import Axes3D
        mc = outgrid[:, 0]
        eta = outgrid[:, 1]
        sz1 = outgrid[:, 2]
        fig = pl.figure(figsize=(12, 10))
        ax = fig.add_subplot(111, projection='3d')
        ax.scatter(mc[1:],
                   eta[1:],
                   sz1[1:],
                   zdir='z',
                   s=3,
                   c='b',
                   alpha=0.2,
                   depthshade=True)

        xlim = ax.get_xlim3d()
        ylim = ax.get_ylim3d()
        zlim = ax.get_zlim3d()
        print xlim
        print ylim
        print zlim

        ax.scatter(mc,
                   eta,
                   zlim[0] * np.ones(len(outgrid)),
                   zdir='z',
                   s=3,
                   c='k',
                   alpha=0.04,
                   depthshade=True)
        ax.scatter(mc,
                   ylim[1] * np.ones(len(outgrid)),
                   sz1,
                   zdir='z',
                   s=3,
                   c='k',
                   alpha=0.04,
                   depthshade=True)
        ax.scatter(xlim[0] * np.ones(len(outgrid)),
                   eta,
                   sz1,
                   zdir='z',
                   s=3,
                   c='k',
                   alpha=0.04,
                   depthshade=True)
        ax.scatter(mc[0], eta[0], sz1[0], s=100, c='r', depthshade=True)

        ax.scatter(mc[0],
                   eta[0],
                   zlim[0],
                   s=100,
                   c='r',
                   alpha=0.1,
                   depthshade=True)
        ax.scatter(mc[0],
                   ylim[1],
                   sz1[0],
                   s=100,
                   c='r',
                   alpha=0.1,
                   depthshade=True)
        ax.scatter(xlim[0],
                   eta[0],
                   sz1[0],
                   s=100,
                   c='r',
                   alpha=0.1,
                   depthshade=True)
        ax.set_xlim3d(xlim)
        ax.set_ylim3d(ylim)
        ax.set_zlim3d(zlim)

        ax.set_xlabel('$\\mathcal{M}$')
        ax.set_ylabel('$\\eta$')
        ax.set_zlabel('$\\chi_1$')
        pl.title('$m_1$ = ' + str(mass1) + '$M_{\\odot}$: $m_2$ = ' +
                 str(mass2) + '$M_{\\odot}$: $\\chi_1$ = ' + str(chi1),
                 y=1.03)
        pl.grid()
        pl.rcParams.update({'font.size': 13})

        if path: plot_dir = path + '/ellipsoid_sample_plots'
        else: plot_dir = 'ellipsoid_sample_plots'
        os.system('mkdir -p ' + plot_dir)
        pl.savefig(plot_dir + '/ellipsoid_sample_' + str(graceid) +
                   '_plot.png')
        if show:
            pl.show()

    return outgrid, likelihood_grid  # KU
示例#7
0
    analyticPSD_Q = True
else:
    psd_map = common_cl.parse_cl_key_value(opts.psd_file)
    for inst, psdfile in psd_map.items():
        if psd_map.has_key(psdfile):
            psd_map[psdfile].add(inst)
        else:
            psd_map[psdfile] = set([inst])
        del psd_map[inst]

    for psdf, insts in psd_map.iteritems():
        xmldoc = utils.load_filename(psdf,
                                     contenthandler=series.PSDContentHandler)
        # FIXME: How to handle multiple PSDs
        for inst in insts:
            psd = series.read_psd_xmldoc(xmldoc)[inst]
            psd_f_high = len(psd.data.data) * psd.deltaF
            f = np.arange(0, psd_f_high, psd.deltaF)
            fvals = np.arange(0, psd_f_high, PSIG.deltaF)

            def anon_interp(newf):
                return np.interp(newf, f, psd.data.data)

            eff_fisher_psd = np.array(map(anon_interp, fvals))

    analyticPSD_Q = False

IP = lsu.Overlap(fLow=ip_min_freq,
                 deltaF=PSIG.deltaF,
                 psd=eff_fisher_psd,
                 analyticPSD_Q=analyticPSD_Q)
def getSamples(graceid, mass1, mass2, chi1, network_snr, samples, PSD, fmin=30, NMcs=5, NEtas=5, NChis=5, mc_cut=1.741, lowMass_approx='lalsim.SpinTaylorT4', highMass_approx='lalsim.IMRPhenomPv2', Forced=False, logFile=False, saveData=False, plot=False, path=False, show=False):
    m1_SI = mass1 * lal.MSUN_SI
    m2_SI = mass2 * lal.MSUN_SI
#     min_mc_factor, max_mc_factor = 0.9, 1.1
    min_mc_factor, max_mc_factor = 0.98, 1.02
    min_eta, max_eta = 0.05, 0.25
    min_chi1, max_chi1 = -0.99, 0.99

    # match_cntr = 0.9 # Fill an ellipsoid of match = 0.9
    bank_min_match = 0.97
    match_cntr = np.min([np.max([0.9, 1 - 9.2/2/network_snr**2]), bank_min_match]) ## Richard's suggestion
#     wide_match = 1 - (1 - match_cntr)**(2/3.0)
    wide_match =  match_cntr * 0.8 ### Richard's suggestion
    fit_cntr = match_cntr # Do the effective Fisher fit with pts above this match
    Nrandpts = samples # Requested number of pts to put inside the ellipsoid

    template_min_freq = fmin ### This needs to be discussed
    ip_min_freq = fmin ### This needs to be discussed
    lambda1, lambda2 = 0, 0

    #
    # Setup signal and IP class
    #
    param_names = ['Mc', 'eta', 'spin1z']
    McSIG = lsu.mchirp(m1_SI, m2_SI)
    etaSIG = lsu.symRatio(m1_SI, m2_SI)
    chiSIG = chi1

    if logFile:
        log = open(logFile, 'a') ### Generate log file

    if Forced + (lsu.mchirp(mass1, mass2) > mc_cut): ## If forced to use the IMR waveform, or if the chirp mass value is above the cut.
        if logFile:
	    log.writelines( str(datetime.datetime.today()) + '\t' + 'Using IMRPhenomPv2 approximation.' + '\n')
	else:
	    print 'Using IMRPhenomPv2 approximation.'

        PSIG = lsu.ChooseWaveformParams(
                m1=m1_SI, m2=m2_SI, spin1z=chi1,
                lambda1=lambda1, lambda2=lambda2,
                fmin=template_min_freq,
                approx=eval(highMass_approx)
                )

    else:
        if logFile:
            log.writelines( str(datetime.datetime.today()) + '\t' + 'Using SpinTaylorT4 approximation.' + '\n')
        else:
            print 'Using SpinTaylorT4 approximation.'

        PSIG = lsu.ChooseWaveformParams(
                m1=m1_SI, m2=m2_SI, spin1z=chi1,
                lambda1=lambda1, lambda2=lambda2,
                fmin=template_min_freq,
                approx=eval(lowMass_approx)
                )

    # Find a deltaF sufficient for entire range to be explored
    PTEST = PSIG.copy()

    # Check the waveform generated in the corners for the
    # longest possible waveform
    PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG*min_mc_factor, min_eta)
    deltaF_1 = lsu.findDeltaF(PTEST)
    PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG*min_mc_factor, max_eta)
    deltaF_2 = lsu.findDeltaF(PTEST)
    # set deltaF accordingly
    PSIG.deltaF = min(deltaF_1, deltaF_2)

    PTMPLT = PSIG.copy()

    psd_map = common_cl.parse_cl_key_value(PSD)
    for inst, psdfile in psd_map.items():
        if psd_map.has_key(psdfile):
            psd_map[psdfile].add(inst)
        else:
            psd_map[psdfile] = set([inst])
        del psd_map[inst]

    for psdf, insts in psd_map.iteritems():
        xmldoc = utils.load_filename(psdf, contenthandler=series.PSDContentHandler)
        # FIXME: How to handle multiple PSDs
        for inst in insts:
            psd = series.read_psd_xmldoc(xmldoc, root_name=None)[inst]
            psd_f_high = len(psd.data.data)*psd.deltaF
            f = np.arange(0, psd_f_high, psd.deltaF)
            fvals = np.arange(0, psd_f_high, PSIG.deltaF)
            eff_fisher_psd = np.interp(fvals, f, psd.data.data)

    analyticPSD_Q = False

    freq_upper_bound = np.min([2000.0, (psd.data.length) * (psd.deltaF) * 0.98])
    print 'freq_upper_bound = ' + str(freq_upper_bound)
    PSIG.tref = 123456789
    IP = lsu.Overlap(fLow = ip_min_freq, fMax=freq_upper_bound,
        deltaF = PSIG.deltaF,
        psd = eff_fisher_psd,
        analyticPSD_Q = analyticPSD_Q
        )

    hfSIG = lsu.norm_hoff(PSIG, IP)

    # Find appropriate parameter ranges
    min_mc = McSIG * min_mc_factor
    max_mc = McSIG * max_mc_factor
    param_ranges = eff.find_effective_Fisher_region(PSIG, IP, wide_match,
            param_names, [[min_mc, max_mc],[min_eta, max_eta], [min_chi1, max_chi1]])


    # setup uniform parameter grid for effective Fisher
    pts_per_dim = [NMcs, NEtas, NChis]

    Mcpts, etapts, chipts = eff.make_regular_1d_grids(param_ranges, pts_per_dim)
    etapts = map(lsu.sanitize_eta, etapts)
    McMESH, etaMESH, chiMESH = eff.multi_dim_meshgrid(Mcpts, etapts, chipts)
    McFLAT, etaFLAT, chiFLAT = eff.multi_dim_flatgrid(Mcpts, etapts, chipts)
    dMcMESH = McMESH - McSIG
    detaMESH = etaMESH - etaSIG
    dchiMESH = chiMESH - chiSIG
    dMcFLAT = McFLAT - McSIG
    detaFLAT = etaFLAT - etaSIG
    dchiFLAT = chiFLAT - chiSIG

    grid = eff.multi_dim_grid(Mcpts, etapts, chipts)

    # Change units on Mc
    dMcFLAT_MSUN = dMcFLAT / lal.MSUN_SI
    dMcMESH_MSUN = dMcMESH / lal.MSUN_SI
    McMESH_MSUN = McMESH / lal.MSUN_SI
    McSIG_MSUN = McSIG / lal.MSUN_SI

    # Evaluate ambiguity function on the grid
    rhos = np.array(eff.evaluate_ip_on_grid(hfSIG, PTMPLT, IP, param_names, grid))
    rhogrid = rhos.reshape(NMcs, NEtas, NChis)

    # Fit to determine effective Fisher matrix
    # Adapt the match value to make sure all the Evals are positive
    gam_prior = np.diag([10.*10.,4*4.,1.])  # prior on mass, eta, chi.  (the 'prior' on mass is mainly used to regularize, and is too narrow)
    evals = np.array([-1, -1, -1])
    count = 0
    start = time.time()
    match_cntrs = np.array([0.97, 0.98, 0.99])
    while np.any( np.array( [np.real(evals[0]), np.real(evals[1]), np.real(evals[2])] ) < 0 ):
        if count>0:
            if logFile:
                log.writelines( str(datetime.datetime.today()) + '\t' + 'At least one of the eval is negative: switching to match of ' + str(match_cntrs[count]) + '\n' )
            else:
                print 'At least one of the eval is negative: switching to match of ' + str(match_cntrs[count])
        wide_match = 1 - (1 - match_cntrs[count])**(2/3.0)
        fit_cntr = match_cntrs[count] # Do the effective Fisher fit with pts above this match
        cut = rhos > fit_cntr
        if np.sum(cut) >= 6:
            fitgamma = eff.effectiveFisher(eff.residuals3d, rhos[cut], dMcFLAT_MSUN[cut], detaFLAT[cut], dchiFLAT[cut])
            # Find the eigenvalues/vectors of the effective Fisher matrix
            gam = eff.array_to_symmetric_matrix(fitgamma)
            gam = gam + gam_prior
            evals, evecs, rot = eff.eigensystem(gam)
            count += 1
            if (count >= 3) and np.any( np.array( [np.real(evals[0]), np.real(evals[1]), np.real(evals[2])] ) < 0 ):
                return adapt_failure(logFile, log)
                sys.exit()
        else:
            return adapt_failure(logFile, log)
            sys.exit()

    #
    # Distribute points inside predicted ellipsoid of certain level of overlap
    #
    r1 = np.sqrt(2.*(1.-match_cntr)/np.real(evals[0])) # ellipse radii ...
    r2 = np.sqrt(2.*(1.-match_cntr)/np.real(evals[1])) # ... along eigen-directions
    r3 = np.sqrt(2.*(1.-match_cntr)/np.real(evals[2])) # ... along eigen-directions
### CHECK ### Should we not use the updated match_cntr value? This seems to be a bug ###



    NN = 0
    NN_total = 0
    cart_grid = [[0., 0., 0.]]
    sph_grid = [[0., 0., 0.]]
    while NN < Nrandpts:
        NN_total += 1
        r = np.random.rand()
        ph = np.random.rand() * 2.*np.pi
        costh = np.random.rand()*2. - 1.
        sinth = np.sqrt(1. - costh * costh)
        th = np.arccos(costh)
        rrt = r**(1./3.)
        x1 = r1 * rrt * sinth * np.cos(ph)
        x2 = r2 * rrt * sinth * np.sin(ph)
        x3 = r3 * rrt * costh

        ### CHECK ####
        cart_grid_point = [x1, x2, x3]
        cart_grid_point = np.array(np.real( np.dot(rot, cart_grid_point)) )

        rand_Mc = cart_grid_point[0] * lal.MSUN_SI + McSIG # Mc (kg)
        rand_eta = cart_grid_point[1] + etaSIG # eta
        rand_chi = cart_grid_point[2] + chiSIG
        ### CHECK ####

        condition1 = rand_eta > 0
        condition2 = rand_eta <= 0.25
        condition3 = np.abs(rand_chi) < 1.0
        joint_condition = condition1 * condition2 * condition3
        if joint_condition:
            cart_grid.append( [cart_grid_point[0], cart_grid_point[1], cart_grid_point[2]] ) ## CHECK
            NN += 1
    cart_grid = np.array(cart_grid)
    sph_grid = np.array(sph_grid)
    if logFile:
        log.writelines(str(datetime.datetime.today()) + '\t' + 'Selected ' + str(NN) + ' points from ' + str(NN_total) + ' random samples within the ellipsoid \n')
    else:
        print 'Selected ' + str(NN) + ' points from ' + str(NN_total) + ' random samples within the ellipsoid'

    # Rotate to get coordinates in parameter basis
    ### CHECK! No need to rotate again ###
#     cart_grid = np.array([ np.real( np.dot(rot, cart_grid[i]))
#         for i in xrange(len(cart_grid)) ])
    # Put in convenient units,
    # change from parameter differential (i.e. dtheta)
    # to absolute parameter value (i.e. theta = theta_true + dtheta)
    rand_dMcs_MSUN, rand_detas, rand_dChis = tuple(np.transpose(cart_grid)) # dMc, deta, dchi
    rand_Mcs = rand_dMcs_MSUN * lal.MSUN_SI + McSIG # Mc (kg)
    rand_etas = rand_detas + etaSIG # eta
    rand_chis = rand_dChis + chiSIG

    # Prune points with unphysical values of eta from cart_grid
    rand_etas = np.array(map(partial(lsu.sanitize_eta, exception=np.NAN), rand_etas))
    cart_grid = np.transpose((rand_Mcs,rand_etas,rand_chis)) #### CHECK ####
    phys_cut = ~np.isnan(cart_grid).any(1) # cut to remove unphysical pts
    cart_grid = cart_grid[phys_cut]
    keep_phys_spins = np.abs(cart_grid[:,2]) < 1.0 #### CHECK ####
    cart_grid = cart_grid[keep_phys_spins] #### CHECK ####

    # Output Cartesian and spherical coordinates of intrinsic grid
    indices = np.arange(len(cart_grid))
    Mcs_MSUN, etas, chis = np.transpose(cart_grid) #### CHECK ####
    Mcs_MSUN = Mcs_MSUN / lal.MSUN_SI
    outgrid = np.transpose((Mcs_MSUN,etas,chis)) #### CHECK ####

    if saveData:
        if path: data_dir = path + '/intrinsic_grids'
        else: data_dir = 'intrinsic_grids'
        os.system('mkdir -p ' + data_dir)
        np.savetxt(data_dir + '/intrinsic_grid_' + str(graceid) + '_samples.dat', outgrid, fmt='%f\t%f\t%f')

    if plot:
        import pylab as pl
        from mpl_toolkits.mplot3d import Axes3D
        mc = outgrid[:,0]
        eta = outgrid[:,1]
        sz1 = outgrid[:,2]
        fig = pl.figure(figsize=(12, 10))
        ax = fig.add_subplot(111, projection='3d')
        ax.scatter(mc[1:], eta[1:], sz1[1:], zdir='z', s=3, c='b', alpha=0.2, depthshade=True)

        xlim = ax.get_xlim3d()
        ylim = ax.get_ylim3d()
        zlim = ax.get_zlim3d()
        print xlim
        print ylim
        print zlim

        ax.scatter(mc, eta, zlim[0]*np.ones(len(outgrid)), zdir='z', s=3, c='k', alpha=0.04, depthshade=True)
        ax.scatter(mc, ylim[1]*np.ones(len(outgrid)), sz1, zdir='z', s=3, c='k', alpha=0.04, depthshade=True)
        ax.scatter(xlim[0]*np.ones(len(outgrid)), eta, sz1, zdir='z', s=3, c='k', alpha=0.04, depthshade=True)
        ax.scatter(mc[0], eta[0], sz1[0], s=100, c='r', depthshade=True)

        ax.scatter(mc[0], eta[0], zlim[0], s=100, c='r', alpha=0.1, depthshade=True)
        ax.scatter(mc[0], ylim[1], sz1[0], s=100, c='r', alpha=0.1, depthshade=True)
        ax.scatter(xlim[0], eta[0], sz1[0], s=100, c='r', alpha=0.1, depthshade=True)
        ax.set_xlim3d(xlim)
        ax.set_ylim3d(ylim)
        ax.set_zlim3d(zlim)

        ax.set_xlabel('$\\mathcal{M}$')
        ax.set_ylabel('$\\eta$')
        ax.set_zlabel('$\\chi_1$')
        pl.title('$m_1$ = ' + str(mass1) + '$M_{\\odot}$: $m_2$ = ' + str(mass2) + '$M_{\\odot}$: $\\chi_1$ = ' + str(chi1), y=1.03)
        pl.grid()
        pl.rcParams.update({'font.size': 13})

        if path: plot_dir = path + '/ellipsoid_sample_plots'
        else: plot_dir = 'ellipsoid_sample_plots'
        os.system('mkdir -p ' + plot_dir)
        pl.savefig(plot_dir + '/ellipsoid_sample_' + str(graceid) + '_plot.png')
        if show:
            pl.show()

    return outgrid
    eff_fisher_psd = lal.LIGOIPsd
    analyticPSD_Q = True
else:
    psd_map = common_cl.parse_cl_key_value(opts.psd_file)
    for inst, psdfile in psd_map.items():
        if psd_map.has_key(psdfile):
            psd_map[psdfile].add(inst)
        else:
            psd_map[psdfile] = set([inst])
        del psd_map[inst]

    for psdf, insts in psd_map.iteritems():
        xmldoc = utils.load_filename(psdf, contenthandler=series.PSDContentHandler)
        # FIXME: How to handle multiple PSDs
        for inst in insts:
            psd = series.read_psd_xmldoc(xmldoc)[inst]
            psd_f_high = len(psd.data.data)*psd.deltaF
            f = np.arange(0, psd_f_high, psd.deltaF)
            fvals = np.arange(0, psd_f_high, PSIG.deltaF)

            def anon_interp(newf):
                return np.interp(newf, f, psd.data.data)
            eff_fisher_psd = np.array(map(anon_interp, fvals))

    analyticPSD_Q = False

IP = lsu.Overlap(fLow = ip_min_freq,
        deltaF = PSIG.deltaF,
        psd = eff_fisher_psd,
        analyticPSD_Q = analyticPSD_Q
        )