def process_row(self, channel, rate, bin_idx, buftime, row):
        """
		Given a channel, rate, and the current buffer
		time, will process a row from a gstreamer buffer.
		"""
        # if segments provided, ensure that trigger falls within these segments
        if self.frame_segments[self.instrument]:
            trigger_seg = segments.segment(
                LIGOTimeGPS(row.end_time, row.end_time_ns),
                LIGOTimeGPS(row.end_time, row.end_time_ns))

        if not self.frame_segments[self.instrument] or self.frame_segments[
                self.instrument].intersects_segment(trigger_seg):
            waveform = self.waveforms[channel].index_to_waveform(
                rate, bin_idx, row.channel_index)
            trigger_time = row.end_time + row.end_time_ns * 1e-9

            # append row for data transfer/saving
            channel_name = self.bin_to_channel(channel, bin_idx)
            feature_row = {
                'timestamp': utils.floor_div(buftime, 1. / self.sample_rate),
                'channel': channel_name,
                'snr': row.snr,
                'phase': row.phase,
                'time': trigger_time,
                'frequency': waveform['frequency'],
                'q': waveform['q'],
                'duration': waveform['duration'],
            }
            timestamp = utils.floor_div(buftime, self.buffer_size)
            self.feature_queue.append(timestamp, channel_name, feature_row)
示例#2
0
def tofrequencyseries(bursttable, fcol='peak_frequency', pcol=None,\
                      name="", epoch=LIGOTimeGPS(), deltaF=0, f0=0,\
                      unit=lalStrainUnit):
    """
    Returns a numpy.array and REAL8FrequencySeries built from these
    OmegaSpectrum triggers. The array holds the discrete frequencies at
    which the sectrum was calculated and the series holds the data and
    associated metadata.

    If pcol is not given, the series data is the square of the SNR of each
    'trigger'.
    """

    freq = bursttable.getColumnByName('peak_frequency')
    if pcol:
        data = bursttable.getColumnByName('pcol')
    else:
        data = bursttable.getColumnByName('snr')**2
    freq, data = list(map(numpy.asarray, zip(*sorted(zip(freq, data)))))

    if int(epoch) == 0 and len(bursttable) != 0:
        epoch = LIGOTimeGPS(float(bursttable[0].get_time()))
    if deltaF == 0 and len(bursttable) > 1:
        deltaF = freq[1] - freq[0]
    if f0 == 0 and len(bursttable) != 0:
        f0 = freq[0]

    series = seriesutils.fromarray(data, name=name, epoch=epoch, deltaT=deltaF,\
                                   f0=f0, unit=unit, frequencyseries=True)
    return freq, series
示例#3
0
def _ligotimegps(s, ns=0):
    """Catch TypeError and cast `s` and `ns` to `int`
    """
    from lal import LIGOTimeGPS
    try:
        return LIGOTimeGPS(s, ns)
    except TypeError:
        return LIGOTimeGPS(int(s), int(ns))
示例#4
0
def create_FIR_whitener_kernel(length, duration, sample_rate, psd):
    assert psd
    #
    # Add another COMPLEX16TimeSeries and COMPLEX16FrequencySeries for kernel's FFT (Leo)
    #

    # Add another FFT plan for kernel FFT (Leo)
    fwdplan_kernel = lal.CreateForwardCOMPLEX16FFTPlan(length, 1)
    kernel_tseries = lal.CreateCOMPLEX16TimeSeries(
        name="timeseries of whitening kernel",
        epoch=LIGOTimeGPS(0.),
        f0=0.,
        deltaT=1.0 / sample_rate,
        length=length,
        sampleUnits=lal.Unit("strain"))
    kernel_fseries = lal.CreateCOMPLEX16FrequencySeries(
        name="freqseries of whitening kernel",
        epoch=LIGOTimeGPS(0),
        f0=0.0,
        deltaF=1.0 / duration,
        length=length,
        sampleUnits=lal.Unit("strain s"))

    #
    # Obtain a kernel of zero-latency whitening filter and
    # adjust its length (Leo)
    #

    psd_fir_kernel = reference_psd.PSDFirKernel()
    (kernel, latency,
     fir_rate) = psd_fir_kernel.psd_to_linear_phase_whitening_fir_kernel(
         psd, nyquist=sample_rate / 2.0)
    (
        kernel, theta
    ) = psd_fir_kernel.linear_phase_fir_kernel_to_minimum_phase_whitening_fir_kernel(
        kernel, fir_rate)
    kernel = kernel[-1::-1]
    # FIXME this is off by one sample, but shouldn't be. Look at the miminum phase function
    # assert len(kernel) == length
    if len(kernel) < length:
        kernel = numpy.append(kernel, numpy.zeros(length - len(kernel)))
    else:
        kernel = kernel[:length]

    kernel_tseries.data.data = kernel

    #
    # FFT of the kernel
    #

    lal.COMPLEX16TimeFreqFFT(kernel_fseries, kernel_tseries,
                             fwdplan_kernel)  #FIXME

    return kernel_fseries
def root_trigger(root_event, columns=OMICRON_COLUMNS):
    """Parse a `ROOT` tree entry into a `SnglBurst` object.

    @param root_event
        `ROOT` `TChain` object
    @param columns
        a list of valid `LIGO_LW` column names to load (defaults to all)

    @returns a `SnglBurst` built from the `ROOT` data
    """

    t = lsctables.SnglBurst()
    t.search = u"omicron"

    flow = root_event.fstart
    fhigh = root_event.fend
    if 'flow' in columns:
        t.flow = flow
    if 'fhigh' in columns:
        t.fhigh = fhigh
    if 'bandwidth' in columns:
        t.bandwidth = fhigh - flow
    if 'central_freq' in columns:
        t.central_freq = root_event.frequency
    if 'peak_frequency' in columns:
        t.peak_frequency = root_event.frequency

    peak_time = LIGOTimeGPS(root_event.time)
    if 'time' in columns or 'peak_time' in columns:
        t.peak_time = peak_time.gpsSeconds
    if 'time' in columns or 'peak_time_ns' in columns:
        t.peak_time_ns = peak_time.gpsNanoSeconds
    start_time = LIGOTimeGPS(root_event.tstart)
    if 'start_time' in columns:
        t.start_time = start_time.gpsSeconds
    if 'start_time_ns' in columns:
        t.start_time_ns = start_time.gpsNanoSeconds
    stop_time = LIGOTimeGPS(root_event.tend)
    if 'stop_time' in columns:
        t.stop_time = stop_time.gpsSeconds
    if 'stop_time_ns' in columns:
        t.stop_time_ns = stop_time.gpsNanoSeconds
    if 'duration' in columns:
        t.duration = float(stop_time - start_time)

    if 'snr' in columns:
        t.snr = root_event.snr
    if 'amplitude' in columns:
        t.amplitude = root_event.snr**2 / 2.
    if 'confidence' in columns:
        t.confidence = root_event.snr

    return t
示例#6
0
 def get_output_cache(self):
     """
 Returns a LAL cache of the output file name.  Calling this
 method also induces the output name to get set, so it must
 be at least once.
 """
     if not self.output_cache:
         self.output_cache = [
             CacheEntry(
                 self.get_ifo(), self.__usertag,
                 segments.segment(LIGOTimeGPS(self.get_start()),
                                  LIGOTimeGPS(self.get_end())),
                 "file://localhost" + os.path.abspath(self.get_output()))
         ]
     return self.output_cache
示例#7
0
def root_multi_trigger(root_event, columns=CWB_MULTI_COLUMNS):
    """Parse a multi-detector Coherent WaveBurst `ROOT` tree entry
    into a `MultiBurst` object.

    @param root_event
        `ROOT` `TChain` object
    @param columns
        a list of valid `LIGO_LW` column names to load (defaults to all)

    @returns a `MultiBurst` built from the `ROOT` data
    """
    ifos = get_ifos(root_event)
    first_ifo_idx = CWB_DETECTOR_INDEX.index(list(ifos)[0])

    mb = lsctables.MultiBurst()
    if 'process_id' in columns:
        mb.process_id = lsctables.ProcessID(root_event.run)
    if 'event_id' in columns:
        mb.event_id = lsctables.MultiBurstTable.get_next_id()
    if 'ifos' in columns:
        mb.set_ifos(ifos)

    peak_time = LIGOTimeGPS(list(root_event.time)[first_ifo_idx])
    if 'peak_time' in columns:
        mb.peak_time = peak_time.gpsSeconds
    if 'peak_time_ns' in columns:
        mb.peak_time_ns = peak_time.gpsNanoSeconds
    start_time = LIGOTimeGPS(list(root_event.start)[first_ifo_idx])
    if 'start_time' in columns:
        mb.start_time = start_time.gpsSeconds
    if 'start_time_ns' in columns:
        mb.start_time_ns = start_time.gpsNanoSeconds
    if 'duration' in columns:
        mb.duration = float(list(root_event.duration)[first_ifo_idx])

    fmin = min(root_event.low)
    fmax = min(root_event.high)
    if 'central_freq' in columns:
        mb.central_freq = list(root_event.frequency)[0]
    if 'bandwidth' in columns:
        mb.bandwidth = fmax - fmin

    if 'snr' in columns:
        mb.snr = min(root_event.rho)
    if 'confidence' in columns:
        mb.confidence = root_event.likelihood

    return mb
def rate_per_bin(table, stride, column, bins, start=None, end=None):
    """@returns a list of TimeSeries representing the rate of events
    in each bin for the given LIGO_LW table
    """
    # get time
    tarray = triggers.get_time_column(table).astype(float)
    tarray.sort()
    # get limits
    if not start:
        start = tarray[0]
    if not end:
        end = tarray[-1]
    start = float(start)
    end = float(end)
    duration = end - start
    # contruct time bins
    stride = float(stride)
    duration = stride * round(duration / stride)
    bins = numpy.linspace(start, start + duration, num=duration // stride)
    # calculate rate per bin
    carray = triggers.get_column(str(column))
    out = []
    for bin_l, bin_r in bins:
        in_bin = (bin_l <= carray) & (carray < bin_r)
        rate = CreateREAL8TimeSeries(
            "Rate (Hz) [%s <= %s < %s]" % (bin_l, column, bin_r),
            LIGOTimeGPS(start), 0, stride, lalHertzUnit, bins.size - 1)
        hist, _ = numpy.histogram(tarray, bins=bins)
        rate.data.data = (hist / stride).astype(numpy.float64)
        out.append(rate)
    return out
def rate(table, stride, start=None, end=None):
    """@returns a TimeSeries of rate over time for all triggers in the
    given LIGO_LW table.
    """
    # get time
    tarray = triggers.get_time_column(table).astype(float)
    tarray.sort()
    # get limits
    if not start:
        start = tarray[0]
    if not end:
        end = tarray[-1]
    start = float(start)
    end = float(end)
    duration = end - start
    # contruct time bins
    stride = float(stride)
    duration = stride * round(duration / stride)
    bins = numpy.linspace(start, start + duration, num=duration // stride)
    # calculate rate
    rate = CreateREAL8TimeSeries("Rate (Hz)", LIGOTimeGPS(start), 0, stride,
                                 lalHertzUnit, bins.size - 1)
    hist, _ = numpy.histogram(tarray, bins=bins)
    rate.data.data = hist.astype(numpy.float64) / stride
    return rate
def ascii_trigger(line, columns=OMICRON_COLUMNS):
    """Parse a line of `ASCII` text into a `SnglBurst` object

    @param line
        single line of `ASCII` text from an Omicron file
    @param columns
        a list of valid `LIGO_LW` column names to load (defaults to all)

    @returns a `SnglBurst` built from the `ASCII` data
    """
    if isinstance(line, str):
        dat = map(float, _re_delim.split(line.rstrip()))
    else:
        dat = map(float, line)

    if len(dat) == 5:
        (peak, freq, duration, band, snr) = dat
        peak = LIGOTimeGPS(peak)
        start = peak - duration / 2.
        stop = peak + duration / 2.
    else:
        raise ValueError("Wrong number of columns in ASCII line. "
                         "Cannot read.")

    t = lsctables.SnglBurst()
    t.search = u"omicron"

    if 'start_time' in columns:
        t.start_time = start.gpsSeconds
    if 'start_time_ns' in columns:
        t.start_time_ns = start.gpsNanoSeconds
    if 'time' in columns or 'peak_time' in columns:
        t.peak_time = peak.gpsSeconds
    if 'time' in columns or 'peak_time_ns' in columns:
        t.peak_time_ns = peak.gpsNanoSeconds
    if 'stop_time' in columns:
        t.stop_time = stop.gpsSeconds
    if 'stop_time_ns' in columns:
        t.stop_time_ns = stop.gpsNanoSeconds
    if 'duration' in columns:
        t.duration = duration

    if 'central_freq' in columns:
        t.central_freq = freq
    if 'peak_frequency' in columns:
        t.peak_frequency = freq
    if 'bandwidth' in columns:
        t.bandwidth = band
    if 'flow' in columns:
        t.flow = freq - band / 2.
    if 'fhigh' in columns:
        t.fhigh = freq + band / 2.

    if 'snr' in columns:
        t.snr = snr
    if 'amplitude' in columns:
        t.amplitude = snr**2 / 2.
    if 'confidence' in columns:
        t.confidence = snr
    return t
示例#11
0
文件: skyutils.py 项目: eachase/kagra
def integrate_net_pat(gpstime, network, npts=100):
    """
    Calculate the squared network antenna pattern integrated over solid angle of the whole sky

    gpstime -- time of event

    network -- detector configuration

    npts -- number of points at a given r.a.

    Returns:
    Double for integral of network antenna pattern squared over solid angle

    """
    network_factor = 0

    # Find ra and dec points over the grid
    gps = LIGOTimeGPS(gpstime)
    gmst_rad = GreenwichMeanSiderealTime(gps)
    ra_grid, dec_grid = _sph_grid(npts)

    #import pdb; pdb.set_trace()

    delta_ra = ra_grid[10][1] - ra_grid[10][0]
    delta_dec = dec_grid[31][10] - dec_grid[30][10]

    # Iterate over all points
    for ra_rad in ra_grid[0]:
        for dec_rad in dec_grid[:, 0]:
            net_pat = net_antenna_pattern_point(gpstime, network, ra_rad,
                                                dec_rad)[0]
            network_factor += (net_pat**2) * np.sin(dec_rad + np.pi /
                                                    2) * delta_ra * delta_dec

    return network_factor / (4 * np.pi)
示例#12
0
	def endElement(self):
		if self.Type == u"ISO-8601":
			import dateutil.parser
			self.pcdata = dateutil.parser.parse(self.pcdata)
		elif self.Type == u"GPS":
			from lal import LIGOTimeGPS
			# FIXME:  remove cast to string when lal swig
			# can cast from unicode
			self.pcdata = LIGOTimeGPS(str(self.pcdata))
		elif self.Type == u"Unix":
			self.pcdata = float(self.pcdata)
		else:
			# unsupported time type.  not impossible that
			# calling code has overridden TimeTypes set in
			# glue.ligolw.types;  just accept it as a string
			pass
示例#13
0
文件: gpstime.py 项目: farr/lalsuite
def gps_to_str(gps_time, form=None):
    """
    Convert a LIGOTimeGPS time object into a string.
    The output format can be given explicitly, but will default
    as shown in the example.

    Example:

    \code
    >>> gps_to_str(1000000000)
    'September 14 2011, 01:46:25 UTC'
    \endcode

    @returns a string with the given format.
    """
    if not isinstance(gps_time, LIGOTimeGPS):
        gps_time = LIGOTimeGPS(float(gps_time))
    nano = gps_time.gpsNanoSeconds
    utc = _datetime.datetime(*_gps_to_utc(int(gps_time))[:6])
    utc += _datetime.timedelta(microseconds=nano / 1000.0)
    if nano and not form:
        form = "%B %d %Y, %H:%M:%S.%f UTC"
    elif not form:
        form = "%B %d %Y, %H:%M:%S UTC"
    utc_str = utc.strftime(form)
    return utc_str
示例#14
0
 def test_tconvert(self):
     # from GPS
     date = time.tconvert(GPS)
     self.assertEqual(date, DATE)
     # from GPS using LAL LIGOTimeGPS
     try:
         from lal import LIGOTimeGPS
     except ImportError:
         pass
     else:
         d = time.tconvert(LIGOTimeGPS(GPS))
         self.assertEqual(d, DATE)
     # to GPS
     gps = time.tconvert(date)
     self.assertEqual(gps, GPS)
     # special cases
     now = time.tconvert()
     now2 = time.tconvert('now')
     self.assertEqual(now, now2)
     today = time.tconvert('today')
     yesterday = time.tconvert('yesterday')
     self.assertAlmostEqual(today - yesterday, 86400)
     self.assertTrue(now >= today)
     tomorrow = time.tconvert('tomorrow')
     self.assertAlmostEqual(tomorrow - today, 86400)
示例#15
0
def timeDelay(gpsTime, rightAscension, declination, unit, det1, det2):
    """
  timeDelay( gpsTime, rightAscension, declination, unit, det1, det2 )
  
  Calculates the time delay in seconds between the detectors
  'det1' and 'det2' (e.g. 'H1') for a sky location at (rightAscension
  and declination) which must be given in certain units
  ('radians' or 'degree'). The time is passes as GPS time.
  A positive time delay means the GW arrives first at 'det2', then at 'det1'.
    
  Example:
  antenna.timeDelay( 877320548.000, 355.084,31.757, 'degree','H1','L1')
  0.0011604683260994519

  Given these values, the signal arrives first at detector L1,
  and 1.16 ms later at H2
  """

    # check the input arguments
    if unit == 'radians':
        ra_rad = rightAscension
        de_rad = declination
    elif unit == 'degree':
        ra_rad = rightAscension / 180.0 * pi
        de_rad = declination / 180.0 * pi
    else:
        raise ValueError, "Unknown unit %s" % unit

    # check input values
    if ra_rad < 0.0 or ra_rad > 2 * pi:
        raise ValueError, "ERROR. right ascension=%f "\
              "not within reasonable range."\
              % (rightAscension)

    if de_rad < -pi or de_rad > pi:
        raise ValueError, "ERROR. declination=%f not within reasonable range."\
              % (declination)

    if det1 == det2:
        return 0.0

    gps = LIGOTimeGPS(gpsTime)

    # create detector-name map
    detMap = {
        'H1': 'LHO_4k',
        'H2': 'LHO_2k',
        'L1': 'LLO_4k',
        'G1': 'GEO_600',
        'V1': 'VIRGO',
        'T1': 'TAMA_300'
    }

    x1 = inject.cached_detector[detMap[det1]].location
    x2 = inject.cached_detector[detMap[det2]].location
    timedelay = ArrivalTimeDiff(list(x1), list(x2), ra_rad, de_rad, gps)

    return timedelay
示例#16
0
文件: gpstime.py 项目: farr/lalsuite
def utc_to_gps(utc_time):
    """Convert the given `datetime.datetime` into a GPS time

    @returns a LIGOTimeGPS
    """
    if not isinstance(utc_time, _datetime.datetime):
        utc_time = _datetime.datetime.combine(utc_time, _datetime.time())
    _check_utc(utc_time)
    return LIGOTimeGPS(_utc_to_gps(utc_time.utctimetuple()))
示例#17
0
    def get_output(self):
        """
    Returns the file name of output from the ring code. This must be kept
    synchronized with the name of the output file in ring.c.
    """
        if self._AnalysisNode__output is None:
            if None in (self.get_start(), self.get_end(), self.get_ifo(),
                        self.__usertag):
                raise ValueError, "start time, end time, ifo, or user tag has not been set"
            seg = segments.segment(LIGOTimeGPS(self.get_start()),
                                   LIGOTimeGPS(self.get_end()))
            self.set_output(
                os.path.join(
                    self.output_dir, "%s-STRINGSEARCH_%s-%d-%d.xml.gz" %
                    (self.get_ifo(), self.__usertag, int(self.get_start()),
                     int(self.get_end()) - int(self.get_start()))))

        return self._AnalysisNode__output
示例#18
0
def get_strain_from_gwf_files(
    gwf_files: Dict[str, List[Union[str, bytes, os.PathLike]]],
    gps_start: int,
    window: int,
    original_sampling_rate: int = 4096,
    target_sampling_rate: int = 4096,
    as_pycbc_timeseries: bool = True,
    channel: str = 'GDS-CALIB_STRAIN',
    check_integrity: bool = True,
):
    assert isinstance(gps_start, int), 'time is not an int'
    assert isinstance(window, int), 'interval_width is not an int'
    assert isinstance(original_sampling_rate,
                      int), 'original_sampling_rate is not an int'
    assert isinstance(target_sampling_rate,
                      int), 'target_sampling_rate is not an int'
    assert (original_sampling_rate % target_sampling_rate) == 0, (
        'Invalid target_sampling_rate: Not a divisor of original_sampling_rate!'
    )

    sampling_factor = int(original_sampling_rate / target_sampling_rate)
    samples = defaultdict(list)

    for ifo in gwf_files:
        detector_channel = f'{ifo}:{channel}'
        for file_path in gwf_files[ifo]:
            strain = read_frame(
                str(file_path),
                detector_channel,
                start_time=gps_start,
                end_time=gps_start + window,
                check_integrity=check_integrity,
            )

            samples[ifo].append(strain[::sampling_factor])

        samples[ifo] = np.ascontiguousarray(np.concatenate(samples[ifo]))

    if not as_pycbc_timeseries:
        return samples

    else:
        # Convert strain of both detectors to a TimeSeries object
        timeseries = {
            ifo: TimeSeries(initial_array=samples[ifo],
                            delta_t=1.0 / target_sampling_rate,
                            epoch=LIGOTimeGPS(gps_start))
            for ifo in samples
        }

        return timeseries
示例#19
0
文件: skyutils.py 项目: eachase/kagra
def net_antenna_pattern(gpstime, network, psi=0, npts=100, norm=False):

    # FIXME: need to check on this
    gps = LIGOTimeGPS(gpstime)
    gmst_rad = GreenwichMeanSiderealTime(gps)

    ra_grid, dec_grid = _sph_grid(npts)

    net_pat = np.zeros(ra_grid.shape[0] * ra_grid.shape[1])

    net_align = np.zeros(ra_grid.shape[0] * ra_grid.shape[1])
    net_dpf = np.zeros(ra_grid.shape[0] * ra_grid.shape[1])

    psi_rad = 0
    i = 0
    #import pdb; pdb.set_trace()
    for ra_rad, de_rad in zip(ra_grid.flat, dec_grid.flat):
        fp = [
            ComputeDetAMResponse(detectors[ifo].response, ra_rad, de_rad,
                                 psi_rad, gmst_rad)[0] for ifo in network
        ]
        fx = [
            ComputeDetAMResponse(detectors[ifo].response, ra_rad, de_rad,
                                 psi_rad, gmst_rad)[1] for ifo in network
        ]
        fp = np.asarray(fp)
        fx = np.asarray(fx)
        fp2, fx2 = np.dot(fp, fp), np.dot(fx, fx)

        net_dpf[i] = psi_dpf = 0.5 * np.arctan2(2 * np.dot(fp, fx),
                                                (fp2 - fx2))

        fp, fx = fp * np.cos(psi_dpf) + fx * np.sin(psi_dpf), \
                -fp * np.sin(psi_dpf) + fx * np.cos(psi_dpf)
        fp2, fx2 = np.dot(fp, fp), np.dot(fx, fx)
        net_pat[i] = np.sqrt(fp2 + fx2)
        net_align[i] = np.sqrt(fx2 / fp2)
        i += 1

    ra_grid *= 180 / np.pi
    dec_grid *= 180 / np.pi

    net_pat = net_pat.reshape(ra_grid.shape)
    net_align = net_align.reshape(ra_grid.shape)
    net_dpf = net_dpf.reshape(ra_grid.shape) / 2  # we multiplied by two above

    if norm:
        net_pat /= len(network)

    return ra_grid, dec_grid, net_pat, net_align, net_dpf
示例#20
0
文件: skyutils.py 项目: eachase/kagra
def net_antenna_pattern_point(gpstime,
                              network,
                              ra_rad,
                              de_rad,
                              psi=0,
                              norm=False):
    """
    Only get the network antenna pattern at a given ra and dec of interest
    """

    # FIXME: need to check on this
    gps = LIGOTimeGPS(gpstime)
    gmst_rad = GreenwichMeanSiderealTime(gps)

    psi_rad = 0
    #i = 0

    fp = [
        ComputeDetAMResponse(detectors[ifo].response, ra_rad, de_rad, psi_rad,
                             gmst_rad)[0] for ifo in network
    ]
    fx = [
        ComputeDetAMResponse(detectors[ifo].response, ra_rad, de_rad, psi_rad,
                             gmst_rad)[1] for ifo in network
    ]
    #print network
    #for ifo in network:
    #    print ifo, ComputeDetAMResponse(detectors[ifo].response, ra_rad, de_rad, psi_rad, gmst_rad)[0]

    fp = np.asarray(fp)
    fx = np.asarray(fx)
    fp2, fx2 = np.dot(fp, fp), np.dot(fx, fx)

    net_dpf = psi_dpf = 0.5 * np.arctan2(2 * np.dot(fp, fx), (fp2 - fx2))

    fp, fx = fp * np.cos(psi_dpf) + fx * np.sin(psi_dpf), \
            -fp * np.sin(psi_dpf) + fx * np.cos(psi_dpf)
    fp2, fx2 = np.dot(fp, fp), np.dot(fx, fx)
    net_pat = np.sqrt(fp2 + fx2)
    net_align = np.sqrt(fx2 / fp2)

    #net_pat = net_pat.reshape(ra_grid.shape)
    #net_align = net_align.reshape(ra_grid.shape)
    #net_dpf = net_dpf.reshape(ra_grid.shape) / 2 # we multiplied by two above

    if norm:
        net_pat /= len(network)

    return net_pat, net_align, net_dpf
示例#21
0
    def to_pycbc_timeseries(self):
        """
        Output the time series strain data as a :class:`pycbc.types.timeseries.TimeSeries`.
        """

        try:
            from pycbc.types.timeseries import TimeSeries
            from lal import LIGOTimeGPS
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "Cannot output strain data as PyCBC TimeSeries")

        return TimeSeries(self.time_domain_strain,
                          delta_t=(1. / self.sampling_frequency),
                          epoch=LIGOTimeGPS(self.start_time))
示例#22
0
    def to_pycbc_frequencyseries(self):
        """
        Output the frequency series strain data as a :class:`pycbc.types.frequencyseries.FrequencySeries`.
        """

        try:
            from pycbc.types.frequencyseries import FrequencySeries
            from lal import LIGOTimeGPS
        except ImportError:
            raise ImportError(
                "Cannot output strain data as PyCBC FrequencySeries")

        return FrequencySeries(self.frequency_domain_strain,
                               delta_f=1 / self.duration,
                               epoch=LIGOTimeGPS(self.start_time))
示例#23
0
    def to_lal_frequencyseries(self):
        """
        Output the frequency series strain data as a LAL FrequencySeries object.
        """
        try:
            from lal import CreateCOMPLEX16FrequencySeries, LIGOTimeGPS, SecondUnit
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "Cannot output strain data as PyCBC TimeSeries")

        lal_data = CreateCOMPLEX16FrequencySeries(
            "", LIGOTimeGPS(self.start_time), self.frequency_array[0],
            1 / self.duration, SecondUnit, len(self.frequency_domain_strain))
        lal_data.data.data[:] = self.frequency_domain_strain

        return lal_data
示例#24
0
    def to_lal_timeseries(self):
        """
        Output the time series strain data as a LAL TimeSeries object.
        """
        try:
            from lal import CreateREAL8TimeSeries, LIGOTimeGPS, SecondUnit
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "Cannot output strain data as PyCBC TimeSeries")

        lal_data = CreateREAL8TimeSeries("", LIGOTimeGPS(self.start_time), 0,
                                         1 / self.sampling_frequency,
                                         SecondUnit,
                                         len(self.time_domain_strain))
        lal_data.data.data[:] = self.time_domain_strain

        return lal_data
示例#25
0
    def appsink_new_snr_buffer(self, elem):
        """Callback function for SNR appsink."""
        with self.lock:
            # Note: be sure to set property="%s_%d" % (instrument, index) for appsink element
            instrument = elem.name.split("_")[0]
            index = int(elem.name.split("_")[1])
            cur_bank = self.snr_document.bank_snrs_dict[instrument][index]

            sample = elem.emit("pull-sample")
            if sample is None:
                return Gst.FlowReturn.OK

            success, rate = sample.get_caps().get_structure(0).get_int("rate")
            assert success == True

            if cur_bank.deltaT is None:
                cur_bank.deltaT = 1. / rate
            else:
                # sampling rate should not be changing
                assert cur_bank.deltaT == 1. / rate, "Data has different sampling rate."

            buf = sample.get_buffer()
            if buf.mini_object.flags & Gst.BufferFlags.GAP or buf.n_memory(
            ) == 0:
                return Gst.FlowReturn.OK
            # add the time offset of template end time here, this offset should be the same for each templates
            cur_time_stamp = LIGOTimeGPS(
                0,
                sample.get_buffer().pts) + cur_bank.sngl_inspiral_table[0].end

            if cur_bank.s >= cur_time_stamp and cur_bank.e > cur_time_stamp:
                # record the first timestamp closet to start time
                cur_bank.epoch = cur_time_stamp
                cur_bank.data = [pipeio.array_from_audio_sample(sample)]
            elif cur_bank.s <= cur_time_stamp < cur_bank.e:
                cur_bank.data.append(pipeio.array_from_audio_sample(sample))
            else:
                Gst.FlowReturn.OK

            return Gst.FlowReturn.OK
示例#26
0
	def appsink_statevector_new_buffer(self, elem, ifo, bitmaskdict):
		if self.kafka_server is not None:
			with self.lock:
				# retrieve data from appsink buffer
				buf = elem.emit("pull-sample").get_buffer()
				result, mapinfo = buf.map(Gst.MapFlags.READ)
				buf_timestamp = LIGOTimeGPS(0, buf.pts)
				if mapinfo.data:
					s = StringIO.StringIO(mapinfo.data)
					time, state = s.getvalue().split('\n')[0].split()
					state = int(state)
					buf.unmap(mapinfo)
					monitor_dict = {}
					monitor_dict['time'] = float(buf_timestamp)
					for key, bitmask in bitmaskdict.items():
						all_bits_on = bitmask & bitmask
						monitor = state & bitmask
						if monitor == all_bits_on:
							monitor_dict[key] = 1
						else:
							monitor_dict[key] = 0
					# Check if kafka server is now available if it's supposed to be used
					if self.producer is None:
						from kafka import KafkaProducer
						from kafka import errors
						try:
							self.producer = KafkaProducer(
									bootstrap_servers = [self.kafka_server],
									key_serializer = lambda m: json.dumps(m).encode('utf-8'),
									value_serializer = lambda m: json.dumps(m).encode('utf-8'),
								)
						except errors.NoBrokersAvailable:
							self.producer = None
							if self.verbose:
								print("No brokers available for kafka. Defaulting to not pushing to kafka.")
					else:
						self.producer.send("%s_statevector_bit_check_%s" % (ifo, self.machine), value = monitor_dict) 
			return Gst.FlowReturn.OK	
示例#27
0
utcd = utc
for i in range(0, 10):
    utcd[2] = utc[2] + i
    utcd = lal.GPSToUTC(lal.UTCToGPS(utcd))
    dt = datetime.datetime(*utcd[0:6])
    assert(utcd[6] == dt.weekday())
lal.CheckMemoryLeaks()
print("PASSED 'tm' struct conversions")

# check LIGOTimeGPS operations
print("checking LIGOTimeGPS operations ...")
from lal import LIGOTimeGPS
t0 = LIGOTimeGPS()
assert(t0 == 0 and isinstance(t0, LIGOTimeGPS))
assert(t0 != None and not t0 is None)
t1 = LIGOTimeGPS(10.5)
t2 = LIGOTimeGPS(10, 500000000)
assert(not t0 and t1 and t2)
assert(t1 == t2 and isinstance(t1, LIGOTimeGPS))
t3 = +t1
t3 = -t2
assert(t1 == t2 and t1 >= t2 and t2 >= t1)
assert(abs(-t1) == t1)
assert(float(t1) == 10.5)
assert(t1 + 3.5 == 14 and isinstance(t1 + 3.5, LIGOTimeGPS))
t2 -= 5.5
assert(t2 == 5 and isinstance(t2, LIGOTimeGPS))
assert(t2 + 5.5 >= t1 and t2 + 3 != t2)
assert(t2 - 5 == t0 and isinstance(t2 - 5, LIGOTimeGPS))
assert(t1 * 3 == 31.5 and isinstance(t1 * 3, LIGOTimeGPS))
assert(t2 / 2.5 == 2 and isinstance(t2 / 2.5, LIGOTimeGPS))
示例#28
0
    utc[2] = utc[2] + i
    utc[6] = (utc[6] + i) % 7
    utc[7] = utc[7] + i
    utc[8] = -1 + (i % 3)
    assert (lal.GPSToUTC(gps)[0:8] == tuple(utc[0:8]))
    assert (lal.UTCToGPS(utc) == gps)
    utc = lal.GPSToUTC(lal.UTCToGPS(utc))
    dt = datetime.datetime(*utc[0:6])
    assert (utc[6] == dt.weekday())
lal.CheckMemoryLeaks()
print("PASSED 'tm' struct conversions")

# check LIGOTimeGPS operations
print("checking LIGOTimeGPS operations ...")
from lal import LIGOTimeGPS
t0 = LIGOTimeGPS()
assert (type(LIGOTimeGPS(t0)) is LIGOTimeGPS)
assert (is_value_and_type(t0, 0, LIGOTimeGPS))
assert (t0 != None and not t0 is None)
t1 = LIGOTimeGPS(10.5)
t2 = LIGOTimeGPS(10, 500000000)
assert (not t0 and t1 and t2)
assert (is_value_and_type(t1, t2, LIGOTimeGPS))
t3 = +t1
t3 = -t2
assert (t1 == t2 and t1 >= t2 and t2 >= t1)
assert (abs(-t1) == t1)
assert (float(t1) == 10.5)
assert (is_value_and_type(t1 + 3.5, 14, LIGOTimeGPS))
assert (is_value_and_type(3.5 + t1, 14, LIGOTimeGPS))
t2 -= 5.5
示例#29
0
文件: cafe.py 项目: phyytang/lalsuite
def split_bins(cafepacker, extentlimit, verbose=False):
    """
	Split bins in CafePacker so that each bin has an extent no longer
	than extentlimit.
	"""

    #
    # loop over all bins in cafepacker.bins.  loop is backwards because
    # list grows in size as bins are split
    #

    for idx in range(len(cafepacker.bins) - 1, -1, -1):
        #
        # retrieve bin
        #

        origbin = cafepacker.bins[idx]

        #
        # how many pieces?  if bin doesn't need splitting move to
        # next
        #

        n = int(math.ceil(float(abs(origbin.extent)) / extentlimit))
        if n <= 1:
            continue

        #
        # calculate the times of the splits, and then build
        # segmentlistdicts for clipping.
        #

        extents = [origbin.extent[0]] + [
            LIGOTimeGPS(origbin.extent[0] + i * float(abs(origbin.extent)) / n)
            for i in range(1, n)
        ] + [origbin.extent[1]]
        if verbose:
            print("\tsplitting cache spanning %s at %s" %
                  (str(origbin.extent), ", ".join(
                      str(extent) for extent in extents[1:-1])),
                  file=sys.stderr)
        extents = [
            segments.segment(*bounds)
            for bounds in zip(extents[:-1], extents[1:])
        ]

        #
        # build new bins, pack objects from origbin into new bins
        #

        newbins = []
        for extent in extents:
            #
            # append new bin
            #

            newbins.append(LALCacheBin())

            #
            # test each cache entry in original bin
            #

            extent_plus_max_gap = extent.protract(cafepacker.max_gap)
            for cache_entry in origbin.objects:
                #
                # quick check of gap
                #

                if cache_entry.segment.disjoint(extent_plus_max_gap):
                    continue

                #
                # apply each offset vector
                #

                cache_entry_segs = cache_entry.segmentlistdict
                for offset_vector in cafepacker.offset_vectors:
                    cache_entry_segs.offsets.update(offset_vector)

                    #
                    # test against bin
                    #

                    if cache_entry_segs.intersects_segment(extent):
                        #
                        # object is coicident with
                        # bin
                        #

                        newbins[-1].add(cache_entry)
                        break

            #
            # override the bin's extent
            #

            newbins[-1].extent = extent

        #
        # replace original bin with split bins.
        #

        cafepacker.bins[idx:idx + 1] = newbins
示例#30
0
    def to_coinc_xml_object(self, file_name):
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        ifos = list(self.sngl_files.keys())
        proc_id = ligolw_process.register_to_xmldoc(
            outdoc,
            'pycbc', {},
            ifos=ifos,
            comment='',
            version=pycbc_version.git_hash,
            cvs_repository='pycbc/' + pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        search_summ_table = lsctables.New(lsctables.SearchSummaryTable)
        coinc_h5file = self.coinc_file.h5file
        try:
            start_time = coinc_h5file['segments']['coinc']['start'][:].min()
            end_time = coinc_h5file['segments']['coinc']['end'][:].max()
        except KeyError:
            start_times = []
            end_times = []
            for ifo_comb in coinc_h5file['segments']:
                if ifo_comb == 'foreground_veto':
                    continue
                seg_group = coinc_h5file['segments'][ifo_comb]
                start_times.append(seg_group['start'][:].min())
                end_times.append(seg_group['end'][:].max())
            start_time = min(start_times)
            end_time = max(end_times)
        num_trigs = len(self.sort_arr)
        search_summary = return_search_summary(start_time, end_time, num_trigs,
                                               ifos)
        search_summ_table.append(search_summary)
        outdoc.childNodes[0].appendChild(search_summ_table)

        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)
        time_slide_table = lsctables.New(lsctables.TimeSlideTable)

        # Set up time_slide table
        time_slide_id = lsctables.TimeSlideID(0)
        for ifo in ifos:
            time_slide_row = lsctables.TimeSlide()
            time_slide_row.instrument = ifo
            time_slide_row.time_slide_id = time_slide_id
            time_slide_row.offset = 0
            time_slide_row.process_id = proc_id
            time_slide_table.append(time_slide_row)

        # Set up coinc_definer table
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = \
            "sngl_inspiral<-->sngl_inspiral coincidences"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)

        bank_col_names = ['mass1', 'mass2', 'spin1z', 'spin2z']
        bank_col_vals = {}
        for name in bank_col_names:
            bank_col_vals[name] = self.get_bankfile_array(name)

        coinc_event_names = ['ifar', 'time', 'fap', 'stat']
        coinc_event_vals = {}
        for name in coinc_event_names:
            if name == 'time':
                coinc_event_vals[name] = self.get_end_time()
            else:
                coinc_event_vals[name] = self.get_coincfile_array(name)

        sngl_col_names = [
            'snr', 'chisq', 'chisq_dof', 'bank_chisq', 'bank_chisq_dof',
            'cont_chisq', 'cont_chisq_dof', 'end_time', 'template_duration',
            'coa_phase', 'sigmasq'
        ]
        sngl_col_vals = {}
        for name in sngl_col_names:
            sngl_col_vals[name] = self.get_snglfile_array_dict(name)

        sngl_event_count = 0
        for idx in range(len(self.sort_arr)):
            # Set up IDs and mapping values
            coinc_id = lsctables.CoincID(idx)

            # Set up sngls
            # FIXME: As two-ifo is hardcoded loop over all ifos
            sngl_combined_mchirp = 0
            sngl_combined_mtot = 0
            net_snrsq = 0
            for ifo in ifos:
                # If this ifo is not participating in this coincidence then
                # ignore it and move on.
                if not sngl_col_vals['snr'][ifo][1][idx]:
                    continue
                event_id = lsctables.SnglInspiralID(sngl_event_count)
                sngl_event_count += 1
                sngl = return_empty_sngl()
                sngl.event_id = event_id
                sngl.ifo = ifo
                net_snrsq += sngl_col_vals['snr'][ifo][0][idx]**2
                for name in sngl_col_names:
                    val = sngl_col_vals[name][ifo][0][idx]
                    if name == 'end_time':
                        sngl.set_end(LIGOTimeGPS(val))
                    else:
                        setattr(sngl, name, val)
                for name in bank_col_names:
                    val = bank_col_vals[name][idx]
                    setattr(sngl, name, val)
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                    sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                    sngl.mass1, sngl.mass2)
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                sngl_combined_mchirp += sngl.mchirp
                sngl_combined_mtot += sngl.mtotal

                sngl_inspiral_table.append(sngl)

                # Set up coinc_map entry
                coinc_map_row = lsctables.CoincMap()
                coinc_map_row.table_name = 'sngl_inspiral'
                coinc_map_row.coinc_event_id = coinc_id
                coinc_map_row.event_id = event_id
                coinc_event_map_table.append(coinc_map_row)

            sngl_combined_mchirp = sngl_combined_mchirp / len(ifos)
            sngl_combined_mtot = sngl_combined_mtot / len(ifos)

            # Set up coinc inspiral and coinc event tables
            coinc_event_row = lsctables.Coinc()
            coinc_inspiral_row = lsctables.CoincInspiral()
            coinc_event_row.coinc_def_id = coinc_def_id
            coinc_event_row.nevents = len(ifos)
            coinc_event_row.instruments = ','.join(ifos)
            coinc_inspiral_row.set_ifos(ifos)
            coinc_event_row.time_slide_id = time_slide_id
            coinc_event_row.process_id = proc_id
            coinc_event_row.coinc_event_id = coinc_id
            coinc_inspiral_row.coinc_event_id = coinc_id
            coinc_inspiral_row.mchirp = sngl_combined_mchirp
            coinc_inspiral_row.mass = sngl_combined_mtot
            coinc_inspiral_row.set_end(
                LIGOTimeGPS(coinc_event_vals['time'][idx]))
            coinc_inspiral_row.snr = net_snrsq**0.5
            coinc_inspiral_row.false_alarm_rate = coinc_event_vals['fap'][idx]
            coinc_inspiral_row.combined_far = 1. / coinc_event_vals['ifar'][idx]
            # Transform to Hz
            coinc_inspiral_row.combined_far = \
                                    coinc_inspiral_row.combined_far / YRJUL_SI
            coinc_event_row.likelihood = coinc_event_vals['stat'][idx]
            coinc_inspiral_row.minimum_duration = 0.
            coinc_event_table.append(coinc_event_row)
            coinc_inspiral_table.append(coinc_inspiral_row)

        outdoc.childNodes[0].appendChild(coinc_def_table)
        outdoc.childNodes[0].appendChild(coinc_event_table)
        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(time_slide_table)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        ligolw_utils.write_filename(outdoc, file_name)
示例#31
0
def generate_sample(static_arguments,
                    event_tuple,
                    waveform_params=None):
    """
    Generate a single sample (or example) by taking a piece of LIGO
    background noise (real or synthetic, depending on `event_tuple`),
    optionally injecting a simulated waveform (depending on
    `waveform_params`) and post-processing the result (whitening,
    band-passing).
    
    Args:
        static_arguments (dict): A dictionary containing global
            technical parameters for the sample generation, for example
            the target_sampling_rate of the output.
        event_tuple (tuple): A tuple `(event_time, file_path)`, which
            specifies the GPS time at which to make an injection and
            the path of the HDF file which contains said GPS time.
            If `file_path` is `None`, synthetic noise will be used
            instead and the `event_time` only serves as a seed for
            the corresponding (random) noise generator.
        waveform_params (dict): A dictionary containing the randomly
            sampled parameters that are passed as inputs to the
            waveform model (e.g., the masses, spins, position, ...).

    Returns:
        A tuple `(sample, injection_parameters)`, which contains the
        generated `sample` itself (a dict with keys `{'event_time',
        'h1_strain', 'l1_strain'}`), and the `injection_parameters`,
        which are either `None` (in case no injection was made), or a
        dict containing the `waveform_params` and some additional
        parameters (e.g., single detector SNRs).
    """

    # -------------------------------------------------------------------------
    # Define shortcuts for some elements of self.static_arguments
    # -------------------------------------------------------------------------

    # Read out frequency-related arguments
    original_sampling_rate = static_arguments['original_sampling_rate']
    target_sampling_rate = static_arguments['target_sampling_rate']
    f_lower = static_arguments['f_lower']
    delta_f = static_arguments['delta_f']
    fd_length = static_arguments['fd_length']

    # Get the width of the noise sample that we either select from the raw
    # HDF files, or generate synthetically
    noise_interval_width = static_arguments['noise_interval_width']

    # Get how many seconds before and after the event time to use
    seconds_before_event = static_arguments['seconds_before_event']
    seconds_after_event = static_arguments['seconds_after_event']

    # Get the event time and the dict containing the HDF file path
    event_time, hdf_file_paths = event_tuple

    # -------------------------------------------------------------------------
    # Get the background noise (either from data or synthetically)
    # -------------------------------------------------------------------------

    # If the event_time is None, we generate synthetic noise
    if hdf_file_paths is None:

        # Create an artificial PSD for the noise
        # TODO: Is this the best choice for this task?
        psd = aLIGOZeroDetHighPower(length=fd_length,
                                    delta_f=delta_f,
                                    low_freq_cutoff=f_lower)

        # Actually generate the noise using the PSD and LALSimulation
        noise = dict()
        for i, det in enumerate(('H1', 'L1')):

            # Compute the length of the noise sample in time steps
            noise_length = noise_interval_width * target_sampling_rate

            # Generate the noise for this detector
            noise[det] = noise_from_psd(length=noise_length,
                                        delta_t=(1.0 / target_sampling_rate),
                                        psd=psd,
                                        seed=(2 * event_time + i))

            # Manually fix the noise start time to match the fake event time.
            # However, for some reason, the correct setter method seems broken?
            start_time = event_time - noise_interval_width / 2
            # noinspection PyProtectedMember
            noise[det]._epoch = LIGOTimeGPS(start_time)

    # Otherwise we select the noise from the corresponding HDF file
    else:

        kwargs = dict(hdf_file_paths=hdf_file_paths,
                      gps_time=event_time,
                      interval_width=noise_interval_width,
                      original_sampling_rate=original_sampling_rate,
                      target_sampling_rate=target_sampling_rate,
                      as_pycbc_timeseries=True)
        noise = get_strain_from_hdf_file(**kwargs)

    # -------------------------------------------------------------------------
    # If applicable, make an injection
    # -------------------------------------------------------------------------

    # If no waveform parameters are given, we are not making an injection.
    # In this case, there are no detector signals and no injection
    # parameters, and the strain is simply equal to the noise
    if waveform_params is None:
        detector_signals = None
        output_signals = None
        injection_parameters = None
        output_signals = None
        strain = noise

    # Otherwise, we need to simulate a waveform for the given waveform_params
    # and add it into the noise to create the strain
    else:

        # ---------------------------------------------------------------------
        # Simulate the waveform with the given injection parameters
        # ---------------------------------------------------------------------

        # Actually simulate the waveform with these parameters
        waveform = get_waveform(static_arguments=static_arguments,
                                waveform_params=waveform_params)

        # Get the detector signals by projecting on the antenna patterns
        detector_signals = \
            get_detector_signals(static_arguments=static_arguments,
                                 waveform_params=waveform_params,
                                 event_time=event_time,
                                 waveform=waveform)
        # Store the output_signal
        output_signals = {}
        output_signals = detector_signals.copy()

        # ---------------------------------------------------------------------
        # Add the waveform into the noise as is to calculate the NOMF-SNR
        # ---------------------------------------------------------------------

        # Store the dummy strain, the PSDs and the SNRs for the two detectors
        strain_ = {}
        psds = {}
        snrs = {}

        # Calculate these quantities for both detectors
        for det in ('H1', 'L1'):

            # Add the simulated waveform into the noise to get the dummy strain
            strain_[det] = noise[det].add_into(detector_signals[det])

            # Estimate the Power Spectral Density from the dummy strain, this 1 is the psd segment duration of the strain
            psds[det] = strain_[det].psd(1)
            psds[det] = interpolate(psds[det], delta_f=delta_f)

            # Use the PSD estimate to calculate the optimal matched
            # filtering SNR for this injection and this detector
            snrs[det] = sigma(htilde=detector_signals[det],
                              psd=psds[det],
                              low_frequency_cutoff=f_lower)

        # Calculate the network optimal matched filtering SNR for this
        # injection (which we need for scaling to the chosen injection SNR)
        nomf_snr = np.sqrt(snrs['H1']**2 + snrs['L1']**2)

        # ---------------------------------------------------------------------
        # Add the waveform into the noise with the chosen injection SNR
        # ---------------------------------------------------------------------

        # Compute the rescaling factor
        #injection_snr = waveform_params['injection_snr']
        injection_snr = static_arguments['injection_snr']
        scale_factor = 1.0 * injection_snr / nomf_snr

        strain = {}
        for det in ('H1', 'L1'):

            # Add the simulated waveform into the noise, using a scaling
            # factor to ensure that the resulting NOMF-SNR equals the chosen
            # injection SNR
            strain[det] = noise[det].add_into(scale_factor *
                                              detector_signals[det])
            output_signals[det] = scale_factor * output_signals[det]

        # ---------------------------------------------------------------------
        # Store some information about the injection we just made
        # ---------------------------------------------------------------------

        # Store the information we have computed ourselves
        injection_parameters = {'scale_factor': scale_factor,
                                'h1_snr': snrs['H1'],
                                'l1_snr': snrs['L1']}

        # Also add the waveform parameters we have sampled
        for key, value in waveform_params.iteritems():
            injection_parameters[key] = value

    # -------------------------------------------------------------------------
    # Whiten and bandpass the strain (also for noise-only samples)
    # -------------------------------------------------------------------------

    for det in ('H1', 'L1'):

        # Get the whitening parameters
        segment_duration = static_arguments['whitening_segment_duration']
        max_filter_duration = static_arguments['whitening_max_filter_duration']

        # Whiten the strain (using the built-in whitening of PyCBC)
        # We don't need to remove the corrupted samples here, because we
        # crop the strain later on
        strain[det] = \
            strain[det].whiten(segment_duration=segment_duration,
                               max_filter_duration=max_filter_duration,
                               remove_corrupted=False)
        
        if waveform_params is not None:
            output_signals[det] = \
                signal_whiten(psd = psds[det], 
                              signal = output_signals[det], 
                              segment_duration = segment_duration, 
                              max_filter_duration = max_filter_duration)
    
        # Get the limits for the bandpass
        bandpass_lower = static_arguments['bandpass_lower']
        bandpass_upper = static_arguments['bandpass_upper']

        # Apply a high-pass to remove everything below `bandpass_lower`;
        # If bandpass_lower = 0, do not apply any high-pass filter.
        if bandpass_lower != 0:
            strain[det] = strain[det].highpass_fir(frequency=bandpass_lower,
                                                   remove_corrupted=False,
                                                   order=512)
            if waveform_params is not None:
                output_signals[det] = output_signals[det].highpass_fir(frequency=bandpass_lower,
                                                       remove_corrupted=False,
                                                       order=512)

        # Apply a low-pass filter to remove everything above `bandpass_upper`.
        # If bandpass_upper = sampling rate, do not apply any low-pass filter.
        if bandpass_upper != target_sampling_rate:
            strain[det] = strain[det].lowpass_fir(frequency=bandpass_upper,
                                                  remove_corrupted=False,
                                                  order=512)
            if waveform_params is not None:
                output_signals[det] = output_signals[det].lowpass_fir(frequency=bandpass_upper,
                                                      remove_corrupted=False,
                                                      order=512)

    # -------------------------------------------------------------------------
    # Cut strain (and signal) time series to the pre-specified length
    # -------------------------------------------------------------------------

    for det in ('H1', 'L1'):

        # Define some shortcuts for slicing
        a = event_time - seconds_before_event
        b = event_time + seconds_after_event

        # Cut the strain to the desired length
        strain[det] = strain[det].time_slice(a, b)

        # If we've made an injection, also cut the simulated signal
        if waveform_params is not None:

            # Cut the detector signals to the specified length
            detector_signals[det] = detector_signals[det].time_slice(a, b)
            output_signals[det] = output_signals[det].time_slice(a, b)

            # Also add the detector signals to the injection parameters
            injection_parameters['h1_signal'] = \
                np.array(detector_signals['H1'])
            injection_parameters['l1_signal'] = \
                np.array(detector_signals['L1'])
            
            injection_parameters['h1_output_signal'] = \
                np.array(output_signals['H1'])
            injection_parameters['l1_output_signal'] = \
                np.array(output_signals['L1'])

    # -------------------------------------------------------------------------
    # Collect all available information about this sample and return results
    # -------------------------------------------------------------------------

    # The whitened strain is numerically on the order of O(1), so we can save
    # it as a 32-bit float (unlike the original signal, which is down to
    # O(10^-{30}) and thus requires 64-bit floats).
    sample = {'event_time': event_time,
              'h1_strain': np.array(strain['H1']).astype(np.float32),
              'l1_strain': np.array(strain['L1']).astype(np.float32)}

    return sample, injection_parameters
示例#32
0
class Time(Element):
	"""
	Time element.
	"""
	tagName = u"Time"

	Name = attributeproxy(u"Name")
	Type = attributeproxy(u"Type", default = u"ISO-8601")

	def __init__(self, *args):
		super(Time, self).__init__(*args)
		if self.Type not in ligolwtypes.TimeTypes:
			raise ElementError("invalid Type for Time: '%s'" % self.Type)

	def endElement(self):
		if self.Type == u"ISO-8601":
			import dateutil.parser
			self.pcdata = dateutil.parser.parse(self.pcdata)
		elif self.Type == u"GPS":
			from lal import LIGOTimeGPS
			# FIXME:  remove cast to string when lal swig
			# can cast from unicode
			self.pcdata = LIGOTimeGPS(str(self.pcdata))
		elif self.Type == u"Unix":
			self.pcdata = float(self.pcdata)
		else:
			# unsupported time type.  not impossible that
			# calling code has overridden TimeTypes set in
			# glue.ligolw.types;  just accept it as a string
			pass

	def write(self, fileobj = sys.stdout, indent = u""):
		fileobj.write(self.start_tag(indent))
		if self.pcdata is not None:
			if self.Type == u"ISO-8601":
				fileobj.write(xmlescape(unicode(self.pcdata.isoformat())))
			elif self.Type == u"GPS":
				fileobj.write(xmlescape(unicode(self.pcdata)))
			elif self.Type == u"Unix":
				fileobj.write(xmlescape(u"%.16g" % self.pcdata))
			else:
				# unsupported time type.  not impossible.
				# assume correct thing to do is cast to
				# unicode and let calling code figure out
				# how to ensure that does the correct
				# thing.
				fileobj.write(xmlescape(unicode(self.pcdata)))
		fileobj.write(self.end_tag(u""))
		fileobj.write(u"\n")

	@classmethod
	def now(cls, Name = None):
		"""
		Instantiate a Time element initialized to the current UTC
		time in the default format (ISO-8601).  The Name attribute
		will be set to the value of the Name parameter if given.
		"""
		import datetime
		self = cls()
		if Name is not None:
			self.Name = Name
		self.pcdata = datetime.datetime.utcnow()
		return self

	@classmethod
	def from_gps(cls, gps, Name = None):
		"""
		Instantiate a Time element initialized to the value of the
		given GPS time.  The Name attribute will be set to the
		value of the Name parameter if given.

		Note:  the new Time element holds a reference to the GPS
		time, not a copy of it.  Subsequent modification of the GPS
		time object will be reflected in what gets written to disk.
		"""
		self = cls(AttributesImpl({u"Type": u"GPS"}))
		if Name is not None:
			self.Name = Name
		self.pcdata = gps
		return self