def setUpClass(cls) -> None: X, y, fi = fetch_creditg_df(preprocess=True) train_X, test_X, train_y, _ = fair_stratified_train_test_split(X, y, **fi) cls.train_X = train_X cls.train_y = train_y cls.test_X = test_X cls.fairness_info = fi
def test_fair_stratified_train_test_split(self): X, y, fairness_info = lale.lib.aif360.fetch_creditg_df(preprocess=False) z = range(X.shape[0]) ( train_X, test_X, train_y, test_y, train_z, test_z, ) = fair_stratified_train_test_split(X, y, z, **fairness_info) self.assertEqual(train_X.shape[0], train_y.shape[0]) self.assertEqual(train_X.shape[0], len(train_z)) self.assertEqual(test_X.shape[0], test_y.shape[0]) self.assertEqual(test_X.shape[0], len(test_z))
def test_fair_stratified_train_test_split(self): X = self.creditg_np_num["train_X"] y = self.creditg_np_num["train_y"] fairness_info = self.creditg_np_num["fairness_info"] z = range(X.shape[0]) ( train_X, test_X, train_y, test_y, train_z, test_z, ) = fair_stratified_train_test_split(X, y, z, **fairness_info) self.assertEqual(train_X.shape[0], train_y.shape[0]) self.assertEqual(train_X.shape[0], len(train_z)) self.assertEqual(test_X.shape[0], test_y.shape[0]) self.assertEqual(test_X.shape[0], len(test_z)) self.assertEqual(train_X.shape[0] + test_X.shape[0], X.shape[0])