示例#1
0
    def test_with_hyperopt(self):
        from lale.lib.lale import Hyperopt
        from lale.lib.sklearn import VotingClassifier

        clf = VotingClassifier(
            estimators=[("knn", KNeighborsClassifier()), ("lr", LogisticRegression())]
        )
        _ = clf.auto_configure(self.X_train, self.y_train, Hyperopt, max_evals=1)
示例#2
0
 def test_with_hyperopt(self):
     planned = VotingClassifier(
         estimators=[("lr", LogisticRegression), ("dt", DecisionTreeClassifier)]
     )
     trained = planned.auto_configure(
         self.train_X, self.train_y, optimizer=Hyperopt, cv=3, max_evals=3
     )
     _ = trained.predict(self.test_X)
示例#3
0
    def test_with_gridsearch(self):
        from sklearn.metrics import accuracy_score, make_scorer

        from lale.lib.lale import GridSearchCV
        from lale.lib.sklearn import VotingClassifier

        clf = VotingClassifier(
            estimators=[("knn", KNeighborsClassifier()), ("rc", RidgeClassifier())],
            voting="hard",
        )
        _ = clf.auto_configure(
            self.X_train,
            self.y_train,
            GridSearchCV,
            lale_num_samples=1,
            lale_num_grids=1,
            cv=2,
            scoring=make_scorer(accuracy_score),
        )