示例#1
0
}
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Apply the dimension reduction learned on the train data.",
    "laleType": "Any",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.cross_decomposition.PLSRegression#sklearn-cross_decomposition-plsregression",
    "import_from": "sklearn.cross_decomposition",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["transformer", "estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
PLSRegression = make_operator(_PLSRegressionImpl, _combined_schemas)

set_docstrings(PLSRegression)
    }]
}

_combined_schemas = {
    '$schema':
    'http://json-schema.org/draft-04/schema#',
    'description':
    'Combined schema for expected data and hyperparameters for a transformer for'
    ' a text data transformer based on pre-trained BERT model '
    '(https://github.com/huggingface/pytorch-pretrained-BERT).',
    'type':
    'object',
    'tags': {
        'pre': ['text'],
        'op': ['transformer', '~interpretable'],
        'post': ['embedding']
    },
    'properties': {
        'input_fit': _input_schema_fit,
        'input_predict': _input_schema_predict,
        'output': _output_schema,
        'hyperparams': _hyperparams_schema
    }
}

if __name__ == "__main__":
    lale.helpers.validate_is_schema(_combined_schemas)

BertPretrainedEncoder = make_operator(BertPretrainedEncoderImpl,
                                      _combined_schemas)
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Returns predicted values.",
    "type": "array",
    "items": {
        "type": "number"
    },
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV#sklearn-linear_model-orthogonalmatchingpursuitcv",
    "import_from": "sklearn.linear_model",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
OrthogonalMatchingPursuitCV = make_operator(_OrthogonalMatchingPursuitCVImpl,
                                            _combined_schemas)

set_docstrings(OrthogonalMatchingPursuitCV)
    "laleType":
    "Any",
    "XXX TODO XXX":
    "array of shape = [n_samples, n_classes], or a list of n_outputs",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.neighbors.KNeighborsClassifier#sklearn-neighbors-kneighborsclassifier",
    "import_from": "sklearn.neighbors",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator", "classifier"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
        "input_predict_proba": _input_predict_proba_schema,
        "output_predict_proba": _output_predict_proba_schema,
    },
}
KNeighborsClassifier = make_operator(_KNeighborsClassifierImpl,
                                     _combined_schemas)

set_docstrings(KNeighborsClassifier)
示例#5
0
    "properties": {
        "X": {
            "type": "array",
            "items": {"type": "array", "items": {"type": "number"}},
            "description": "New data, where n_samples in the number of samples and n_features is the number of features",
        }
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Apply the approximate feature map to X.",
    "type": "array",
    "items": {"type": "array", "items": {"type": "number"}},
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler#sklearn-kernel_approximation-skewedchi2sampler",
    "import_from": "sklearn.kernel_approximation",
    "type": "object",
    "tags": {"pre": [], "op": ["transformer"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(SkewedChi2SamplerImpl, _combined_schemas)
SkewedChi2Sampler = make_operator(SkewedChi2SamplerImpl, _combined_schemas)
示例#6
0
            "description": "Copy the input X or not.",
        },
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Perform standardization by centering and scaling",
    "laleType": "Any",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.StandardScaler#sklearn-preprocessing-standardscaler",
    "import_from": "sklearn.preprocessing",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["transformer"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(StandardScalerImpl, _combined_schemas)
StandardScaler = make_operator(StandardScalerImpl, _combined_schemas)
示例#7
0
    "laleType":
    "Any",
    "XXX TODO XXX":
    "array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.LogisticRegression#sklearn-linear_model-logisticregression",
    "import_from": "sklearn.linear_model",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
        "input_predict_proba": _input_predict_proba_schema,
        "output_predict_proba": _output_predict_proba_schema,
        "input_decision_function": _input_decision_function_schema,
        "output_decision_function": _output_decision_function_schema,
    },
}
set_docstrings(LogisticRegressionImpl, _combined_schemas)
LogisticRegression = make_operator(LogisticRegressionImpl, _combined_schemas)
示例#8
0
            "type": "array",
            "items": {"type": "array", "items": {"type": "number"}},
            "description": "Samples",
        }
    },
}
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Returns predicted values.",
    "anyOf": [
        {"type": "array", "items": {"type": "number"}},
        {"type": "array", "items": {"type": "array", "items": {"type": "number"}}},
    ],
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.kernel_ridge.KernelRidge#sklearn-kernel_ridge-kernelridge",
    "import_from": "sklearn.kernel_ridge",
    "type": "object",
    "tags": {"pre": [], "op": ["estimator"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
set_docstrings(KernelRidgeImpl, _combined_schemas)
KernelRidge = make_operator(KernelRidgeImpl, _combined_schemas)
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Projected array.",
    "anyOf": [
        {
            "type": "array",
            "items": {"laleType": "Any", "XXX TODO XXX": "item type"},
            "XXX TODO XXX": "numpy array or scipy sparse of shape [n_samples, n_components]",
        },
        {"type": "array", "items": {"type": "array", "items": {"type": "number"}}},
    ],
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.random_projection.GaussianRandomProjection#sklearn-random_projection-gaussianrandomprojection",
    "import_from": "sklearn.random_projection",
    "type": "object",
    "tags": {"pre": [], "op": ["transformer"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(GaussianRandomProjectionImpl, _combined_schemas)
GaussianRandomProjection = make_operator(
    GaussianRandomProjectionImpl, _combined_schemas
)
示例#10
0
                },
            ],
            "description": "The input samples",
        }
    },
}
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "The predicted values.",
    "anyOf": [
        {"type": "array", "items": {"type": "number"}},
        {"type": "array", "items": {"type": "array", "items": {"type": "number"}}},
    ],
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.RandomForestRegressor#sklearn-ensemble-randomforestregressor",
    "import_from": "sklearn.ensemble",
    "type": "object",
    "tags": {"pre": [], "op": ["estimator", "regressor"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
set_docstrings(RandomForestRegressorImpl, _combined_schemas)
RandomForestRegressor = make_operator(RandomForestRegressorImpl, _combined_schemas)
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "The predicted values.",
    "type": "array",
    "items": {
        "type": "number"
    },
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.GradientBoostingRegressor#sklearn-ensemble-gradientboostingregressor",
    "import_from": "sklearn.ensemble",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator", "regressor"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
set_docstrings(GradientBoostingRegressorImpl, _combined_schemas)
GradientBoostingRegressor = make_operator(GradientBoostingRegressorImpl,
                                          _combined_schemas)
示例#12
0
    "such arrays if n_outputs > 1",
    "laleType":
    "Any",
    "XXX TODO XXX":
    "array of shape = [n_samples, n_classes], or a list of n_outputs",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.ExtraTreesClassifier#sklearn-ensemble-extratreesclassifier",
    "import_from": "sklearn.ensemble",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator", "classifier"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
        "input_predict_proba": _input_predict_proba_schema,
        "output_predict_proba": _output_predict_proba_schema,
    },
}
set_docstrings(ExtraTreesClassifierImpl, _combined_schemas)
ExtraTreesClassifier = make_operator(ExtraTreesClassifierImpl,
                                     _combined_schemas)
示例#13
0
文件: k_means.py 项目: hirzel/lale
    "documentation_url":
    "https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.k_means.html",
    "import_from": "sklearn.cluster",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["transformer", "clustering", "estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
KMeans = make_operator(SKLModel, _combined_schemas)

if sklearn.__version__ >= "1.0":
    # old: https://scikit-learn.org/0.24/modules/generated/sklearn.cluster.KMeans.html
    # new: https://scikit-learn.org/1.0/modules/generated/sklearn.cluster.KMeans.html
    KMeans = KMeans.customize_schema(
        precompute_distances=None,
        n_jobs=None,
        set_as_available=True,
    )

set_docstrings(KMeans)
示例#14
0
        },
    ],
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis#sklearn-discriminant_analysis-quadraticdiscriminantanalysis",
    "import_from": "sklearn.discriminant_analysis",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
        "input_predict_proba": _input_predict_proba_schema,
        "output_predict_proba": _output_predict_proba_schema,
        "input_decision_function": _input_decision_function_schema,
        "output_decision_function": _output_decision_function_schema,
    },
}
QuadraticDiscriminantAnalysis = make_operator(
    _QuadraticDiscriminantAnalysisImpl, _combined_schemas)

set_docstrings(QuadraticDiscriminantAnalysis)
示例#15
0
        "X": {
            "type": "array",
            "items": {"type": "array", "items": {"type": "number"}},
            "description": "Data matrix to be transformed by the model",
        }
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Transformed data",
    "type": "array",
    "items": {"type": "array", "items": {"type": "number"}},
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.NMF#sklearn-decomposition-nmf",
    "import_from": "sklearn.decomposition",
    "type": "object",
    "tags": {"pre": [], "op": ["transformer"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
NMF = make_operator(_NMFImpl, _combined_schemas)

set_docstrings(NMF)
示例#16
0
    "properties": {
        "X": {
            "type": "array",
            "items": {"type": "array", "items": {"type": "number"}},
            "description": "New data.",
        }
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Reduced version of X",
    "type": "array",
    "items": {"type": "array", "items": {"type": "number"}},
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.TruncatedSVD#sklearn-decomposition-truncatedsvd",
    "import_from": "sklearn.decomposition",
    "type": "object",
    "tags": {"pre": [], "op": ["transformer"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(TruncatedSVDImpl, _combined_schemas)
TruncatedSVD = make_operator(TruncatedSVDImpl, _combined_schemas)
示例#17
0
        "X": {
            "type": "array",
            "items": {"type": "array", "items": {"type": "number"}},
            "description": "Input array.",
        },
        "y": {"laleType": "Any", "XXX TODO XXX": "(ignored)", "description": ""},
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Transformed input.",
    "type": "array",
    "items": {"type": "array", "items": {"type": "number"}},
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.FunctionTransformer#sklearn-preprocessing-functiontransformer",
    "import_from": "sklearn.preprocessing",
    "type": "object",
    "tags": {"pre": [], "op": ["transformer"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(FunctionTransformerImpl, _combined_schemas)
FunctionTransformer = make_operator(FunctionTransformerImpl, _combined_schemas)
示例#18
0
文件: gaussian_nb.py 项目: lnxpy/lale
    "items": {
        "type": "array",
        "items": {
            "type": "number"
        }
    },
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.naive_bayes.GaussianNB#sklearn-naive_bayes-gaussiannb",
    "import_from": "sklearn.naive_bayes",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
        "input_predict_proba": _input_predict_proba_schema,
        "output_predict_proba": _output_predict_proba_schema,
    },
}
set_docstrings(GaussianNBImpl, _combined_schemas)
GaussianNB = make_operator(GaussianNBImpl, _combined_schemas)
示例#19
0
    "description":
    "Confidence scores per (sample, class) combination",
    "laleType":
    "Any",
    "XXX TODO XXX":
    "array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.RidgeClassifierCV#sklearn-linear_model-ridgeclassifiercv",
    "import_from": "sklearn.linear_model",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
        "input_decision_function": _input_decision_function_schema,
        "output_decision_function": _output_decision_function_schema,
    },
}
set_docstrings(RidgeClassifierCVImpl, _combined_schemas)
RidgeClassifierCV = make_operator(RidgeClassifierCVImpl, _combined_schemas)
示例#20
0
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Document topic distribution for X.",
    "laleType": "Any",
    "XXX TODO XXX": "shape=(n_samples, n_components)",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.LatentDirichletAllocation#sklearn-decomposition-latentdirichletallocation",
    "import_from": "sklearn.decomposition",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["transformer"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(LatentDirichletAllocationImpl, _combined_schemas)
LatentDirichletAllocation = make_operator(LatentDirichletAllocationImpl,
                                          _combined_schemas)
示例#21
0
_user_validate_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "type": "object",
    "tags": {"pre": [], "op": [""], "post": []},
    "properties": {
        "hyperparams": _user_validate_hyperparam_schema,
        # "input_fit": None,
        # "input_transform": ,
        # "output_transform": _output_transform_schema,
    },
}


UserValidatorOp = Ops.make_operator(UserValidatorImpl, _user_validate_combined_schemas)


class TestUserValidator(unittest.TestCase):
    def test_validate_none(self):
        import re

        import jsonschema

        self.assertRaisesRegex(
            jsonschema.ValidationError,
            re.compile(
                r"invalid value validate=None.*boolean", re.MULTILINE | re.DOTALL
            ),
            UserValidatorOp,
            validate=None,
示例#22
0
    "http://json-schema.org/draft-04/schema#",
    "description":
    "Target values",
    "laleType":
    "Any",
    "XXX TODO XXX":
    "array of float, shape = [n_samples] or [n_samples, n_outputs]",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor#sklearn-neighbors-radiusneighborsregressor",
    "import_from": "sklearn.neighbors",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator", "regressor"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
set_docstrings(RadiusNeighborsRegressorImpl, _combined_schemas)
RadiusNeighborsRegressor = make_operator(RadiusNeighborsRegressorImpl,
                                         _combined_schemas)
示例#23
0
                    "items": {"type": "array", "items": {"type": "number"}},
                },
            ],
            "description": "Samples.",
        }
    },
}
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Returns predicted values.",
    "type": "array",
    "items": {"type": "number"},
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.LassoLarsCV#sklearn-linear_model-lassolarscv",
    "import_from": "sklearn.linear_model",
    "type": "object",
    "tags": {"pre": [], "op": ["estimator", "regressor"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
LassoLarsCV = make_operator(_LassoLarsCVImpl, _combined_schemas)

set_docstrings(LassoLarsCV)
示例#24
0
        },
    },
}
_output_transform_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Binarize each element of X",
    "laleType": "Any",
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.Binarizer#sklearn-preprocessing-binarizer",
    "import_from": "sklearn.preprocessing",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["transformer"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
Binarizer = make_operator(_BinarizerImpl, _combined_schemas)

set_docstrings(Binarizer)
示例#25
0
}
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Returns predicted values.",
    "type": "array",
    "items": {
        "type": "number"
    },
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.ElasticNet#sklearn-linear_model-elasticnet",
    "import_from": "sklearn.linear_model",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
set_docstrings(ElasticNetImpl, _combined_schemas)
ElasticNet = make_operator(ElasticNetImpl, _combined_schemas)
示例#26
0
文件: pca.py 项目: tdoublep/lale
    "description": "Apply dimensionality reduction to X.",
    "type": "array",
    "items": {
        "type": "array",
        "items": {
            "type": "number"
        }
    },
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.PCA#sklearn-decomposition-pca",
    "import_from": "sklearn.decomposition",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["transformer"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_transform": _input_transform_schema,
        "output_transform": _output_transform_schema,
    },
}
set_docstrings(PCAImpl, _combined_schemas)
PCA = make_operator(PCAImpl, _combined_schemas)
示例#27
0
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Returns predicted values.",
    "type": "array",
    "items": {
        "type": "number"
    },
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url":
    "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.ElasticNetCV#sklearn-linear_model-elasticnetcv",
    "import_from": "sklearn.linear_model",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
ElasticNetCV = make_operator(_ElasticNetCVImpl, _combined_schemas)

set_docstrings(ElasticNetCV)
示例#28
0
        "X": {
            "type": "array",
            "items": {"type": "array", "items": {"type": "number"}},
            "description": 'For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train).',
        }
    },
}
_output_predict_schema = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Perform regression on samples in X.",
    "type": "array",
    "items": {"type": "number"},
}
_combined_schemas = {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Combined schema for expected data and hyperparameters.",
    "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.svm.NuSVR#sklearn-svm-nusvr",
    "import_from": "sklearn.svm",
    "type": "object",
    "tags": {"pre": [], "op": ["estimator"], "post": []},
    "properties": {
        "hyperparams": _hyperparams_schema,
        "input_fit": _input_fit_schema,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}
NuSVR = make_operator(_NuSVRImpl, _combined_schemas)

set_docstrings(NuSVR)
示例#29
0
    "description": "Combined schema for expected data and hyperparameters.",
    "type": "object",
    "tags": {
        "pre": [],
        "op": ["estimator"],
        "post": []
    },
    "properties": {
        "hyperparams": _hyperparam_schema,
        "input_fit": _input_schema_fit,
        "input_predict": _input_predict_schema,
        "output_predict": _output_predict_schema,
    },
}

MutatingOp = make_operator(MutatingOpImpl, _combined_schemas)


def fit_clone_fit(op):
    op1 = make_sklearn_compat(op)
    op1.fit(X=[1, 2], y=[1, 2])
    op2 = clone(op1)
    fit2 = op2.fit(X=[3, 4], y=[3, 4])
    print(fit2)


class TestClone(unittest.TestCase):
    def test_clone_clones_op(self):
        op = MutatingOp(k=1)
        fit_clone_fit(op)
示例#30
0
    'description': 'Combined schema for expected data and hyperparameters.',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator'],
        'post': []
    },
    'properties': {
        'hyperparams': _hyperparam_schema,
        'input_fit': _input_schema_fit,
        'input_predict': _input_schema_predict,
        'output': _output_schema
    }
}

IncreaseRows = make_operator(IncreaseRowsImpl, _combined_schemas)

import sklearn.linear_model


class MyLRImpl:
    def __init__(self, penalty='l2', solver='liblinear', C=1.0):
        self.penalty = penalty
        self.solver = solver
        self.C = C

    def fit(self, X, y):
        result = MyLRImpl(self.penalty, self.solver, self.C)
        result._sklearn_model = sklearn.linear_model.LogisticRegression(
            penalty=self.penalty, solver=self.solver, C=self.C)
        result._sklearn_model.fit(X, y)