if sklearn.__version__ >= "0.24": # old: https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.LinearRegression.html # new: https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.LinearRegression.html from lale.schemas import JSON, Bool LinearRegression = LinearRegression.customize_schema(positive=Bool( desc="When set to True, forces the coefficients to be positive.", default=False, forOptimizer=False, )) LinearRegression = LinearRegression.customize_schema(constraint=JSON({ "description": "Setting positive=True is only supported for dense arrays.", "anyOf": [ { "type": "object", "properties": { "positive": { "enum": [False] } } }, { "type": "object", "laleNot": "X/isSparse" }, ], })) lale.docstrings.set_docstrings(LinearRegressionImpl, LinearRegression._schemas)
maxForOptimizer=0.1, ), ) if sklearn.__version__ >= "0.24": # old: https://scikit-learn.org/0.22/modules/generated/sklearn.tree.DecisionTreeRegressor.html # new: https://scikit-learn.org/0.24/modules/generated/sklearn.tree.DecisionTreeRegressor.html from lale.schemas import JSON DecisionTreeRegressor = DecisionTreeRegressor.customize_schema( criterion=JSON({ "description": "Function to measure the quality of a split.", "anyOf": [ { "enum": ["mse", "friedman_mse", "poisson"] }, { "enum": ["mae"], "forOptimizer": False }, ], "default": "mse", }), presort=None, ) lale.docstrings.set_docstrings(DecisionTreeRegressorImpl, DecisionTreeRegressor._schemas)
Nystroem = lale.operators.make_operator(NystroemImpl, _combined_schemas) if sklearn.__version__ >= "0.24": # old: https://scikit-learn.org/0.20/modules/generated/sklearn.kernel_approximation.Nystroem.html # new: https://scikit-learn.org/0.24/modules/generated/sklearn.kernel_approximation.Nystroem.html from lale.schemas import JSON Nystroem = Nystroem.customize_schema(n_jobs=JSON({ "anyOf": [ { "description": "1 unless in joblib.parallel_backend context.", "enum": [None], }, { "description": "Use all processors.", "enum": [-1] }, { "description": "Number of CPU cores.", "type": "integer", "minimum": 1, }, ], "default": None, "description": "The number of jobs to use for the computation.", })) lale.docstrings.set_docstrings(NystroemImpl, Nystroem._schemas)
], desc= "If bootstrap is True, the number of samples to draw from X to train each base estimator.", default=None, ), ) if sklearn.__version__ >= "0.24": # old: https://scikit-learn.org/0.22/modules/generated/sklearn.tree.ExtraTreesRegressor.html # new: https://scikit-learn.org/0.24/modules/generated/sklearn.tree.ExtraTreesRegressor.html from lale.schemas import JSON ExtraTreesRegressor = ExtraTreesRegressor.customize_schema(criterion=JSON({ "description": "Function to measure the quality of a split.", "anyOf": [ { "enum": ["mse", "friedman_mse", "poisson"] }, { "enum": ["mae"], "forOptimizer": False }, ], "default": "mse", }), ) lale.docstrings.set_docstrings(ExtraTreesRegressorImpl, ExtraTreesRegressor._schemas)
# old: https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.VotingClassifier.html # new: https://scikit-learn.org/0.23/modules/generated/sklearn.ensemble.VotingClassifier.html from lale.schemas import JSON VotingClassifier = VotingClassifier.customize_schema(estimators=JSON({ "type": "array", "items": { "type": "array", "laleType": "tuple", "items": [ { "type": "string" }, { "anyOf": [{ "laleType": "operator" }, { "enum": [None, "drop"] }] }, ], }, "description": "List of (string, estimator) tuples. Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones.", })) lale.docstrings.set_docstrings(VotingClassifierImpl, VotingClassifier._schemas)
VotingClassifier = lale.operators.make_operator(VotingClassifierImpl, _combined_schemas) if sklearn.__version__ >= '0.21': # old: https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.VotingClassifier.html # new: https://scikit-learn.org/0.23/modules/generated/sklearn.ensemble.VotingClassifier.html from lale.schemas import JSON VotingClassifier = VotingClassifier.customize_schema(estimators=JSON({ 'type': 'array', 'items': { 'type': 'array', 'laleType': 'tuple', 'items': [{ 'type': 'string' }, { 'anyOf': [{ 'laleType': 'operator' }, { 'enum': [None, 'drop'] }] }] }, 'description': 'List of (string, estimator) tuples. Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones.' })) lale.docstrings.set_docstrings(VotingClassifierImpl, VotingClassifier._schemas)
maxForOptimizer=0.1, ), ) if sklearn.__version__ >= "0.24": # old: https://scikit-learn.org/0.22/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html # new: https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html from lale.schemas import JSON GradientBoostingRegressor = GradientBoostingRegressor.customize_schema( presort=None, criterion=JSON( { "description": "Function to measure the quality of a split.", "anyOf": [ {"enum": ["mse", "friedman_mse"]}, { "description": "Deprecated since version 0.24.", "enum": ["mae"], "forOptimizer": False, }, ], "default": "friedman_mse", } ), ) lale.docstrings.set_docstrings( GradientBoostingRegressorImpl, GradientBoostingRegressor._schemas )