# Plot sky map. vmax = probperdeg2.max() plot.healpix_heatmap(probperdeg2, dlon=dlon, nest=metadata['nest'], vmin=0., vmax=vmax) # Add colorbar. if opts.colorbar: cb = plot.colorbar() cb.set_label(r'prob. per deg$^2$') # Add contours. if opts.contour: cls = 100 * postprocess.find_greedy_credible_levels(skymap) cs = plot.healpix_contour(cls, dlon=dlon, nest=metadata['nest'], colors='k', linewidths=0.5, levels=opts.contour) fmt = r'%g\%%' if rcParams['text.usetex'] else '%g%%' plt.clabel(cs, fmt=fmt, fontsize=6, inline=True) # Add continents. if opts.geo: geojson_filename = os.path.join(os.path.dirname(plot.__file__), 'ne_simplified_coastline.json') with open(geojson_filename, 'r') as geojson_file: geojson = json.load(geojson_file)
# Convert sky map from probability to probability per square degree. probperdeg2 = skymap / hp.nside2pixarea(nside, degrees=True) # Plot sky map. vmax = probperdeg2.max() plot.healpix_heatmap( probperdeg2, dlon=dlon, nest=metadata['nest'], vmin=0., vmax=vmax) # Add colorbar. if opts.colorbar: cb = plot.colorbar() cb.set_label(r'prob. per deg$^2$') # Add contours. if opts.contour: cls = 100 * postprocess.find_greedy_credible_levels(skymap) cs = plot.healpix_contour( cls, dlon=dlon, nest=metadata['nest'], colors='k', linewidths=0.5, levels=opts.contour) fmt = r'%g\%%' if rcParams['text.usetex'] else '%g%%' plt.clabel(cs, fmt=fmt, fontsize=6, inline=True) # Add continents. if opts.geo: geojson_filename = os.path.join(os.path.dirname(plot.__file__), 'ne_simplified_coastline.json') with open(geojson_filename, 'r') as geojson_file: geojson = json.load(geojson_file) for shape in geojson['geometries']: verts = np.deg2rad(shape['coordinates']) plt.plot(verts[:, 0], verts[:, 1], color='0.5', linewidth=0.5)
CDELT2=1./deg_per_pix, CTYPE1='RA---AIT', CTYPE2='DEC--AIT', RADESYS='ICRS')) wcs = WCS(header) fig = pl.figure(figsize=[8,6]) ax = pl.axes(projection=wcs, frame_class=RectangularFrame, aspect=1) world_transform = ax.get_transform('world') ax.set_xlim((180 - args.size) * deg_per_pix, (180 + args.size) * deg_per_pix) ax.set_ylim((90 - args.size) * deg_per_pix, (90 + args.size) * deg_per_pix) cls = postprocess.find_greedy_credible_levels(optprob) cls, _ = reproject_from_healpix((cls, 'icrs'), header) cs = ax.contour(cls, levels=[0.5, 0.9], colors='C0') ax.plot([],[], '-', color='C0', label='Exact masses') ## Work on the suboptimal skymap prob, _ = read_sky_map(args.fits_file, nest=False, distances=False) nside = hp.npix2nside(len(prob)) deg2perpix = hp.nside2pixarea(nside, degrees=True) radec = [float(x) for x in args.radec] deg_per_pix = 4 header = Header(dict(