if opts.refine: # FIXME: We use overlap threshold as a proxy for confidence level selected = get_cr_from_grid(selected, results, cr_thr=opts.overlap_threshold) print "Selected %d cells from %3.2f%% confidence region" % (len(selected), opts.overlap_threshold*100) if opts.prerefine: print "Performing refinement for points with overlap > %1.3f" % opts.overlap_threshold pt_select = results > opts.overlap_threshold selected = selected[pt_select] results = results[pt_select] grid, spacing = amrlib.refine_regular_grid(selected, spacing, return_cntr=True) else: grid, spacing = amrlib.refine_regular_grid(selected, spacing, return_cntr=opts.setup) print "%d cells after refinement" % len(grid) grid = amrlib.prune_duplicate_pts(grid, init_region._bounds, spacing) # # Clean up # grid = numpy.array(grid) bounds_mask = amrlib.check_grid(grid, intr_prms, opts.distance_coordinates) grid = grid[bounds_mask] print "%d cells after bounds checking" % len(grid) if len(grid) == 0: exit("All cells would be removed by physical boundaries.") # Convert back to physical mass grid = amrlib.apply_inv_transform(grid, intr_prms, opts.distance_coordinates)
if opts.prerefine: print "Performing refinement for points with overlap > %1.3f" % opts.overlap_threshold pt_select = results > opts.overlap_threshold selected = selected[pt_select] results = results[pt_select] grid, spacing = amrlib.refine_regular_grid(selected, spacing, return_cntr=True) else: grid, spacing = amrlib.refine_regular_grid(selected, spacing, return_cntr=opts.setup) print "%d cells after refinement" % len(grid) grid = amrlib.prune_duplicate_pts(grid, init_region._bounds, spacing) # # Clean up # grid = numpy.array(grid) bounds_mask = amrlib.check_grid(grid, intr_prms, opts.distance_coordinates) grid = grid[bounds_mask] print "%d cells after bounds checking" % len(grid) if len(grid) == 0: exit("All cells would be removed by physical boundaries.") # Convert back to physical mass grid = amrlib.apply_inv_transform(grid, intr_prms, opts.distance_coordinates)