def main(): # INITIALIZE # User-defined parameters nr = 41 nc = 61 g = 0.8 f = 1.0 silo_y0 = 30.0 silo_opening_half_width = 6 plot_interval = 1.0 run_duration = 80.0 report_interval = 5.0 # report interval, in real-time seconds p_init = 0.4 # probability that a cell is occupied at start plot_every_transition = False # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True) # Set up the states and pair transitions. # Transition data here represent particles moving on a lattice: one state # per direction (for 6 directions), plus an empty state, a stationary # state, and a wall state. ns_dict = { 0 : 'empty', 1 : 'moving up', 2 : 'moving right and up', 3 : 'moving right and down', 4 : 'moving down', 5 : 'moving left and down', 6 : 'moving left and up', 7 : 'rest', 8 : 'wall'} xn_list = setup_transition_list(g, f) # Create data and initialize values. node_state_grid = hmg.add_zeros('node', 'node_state_grid') # Make the grid boundary all wall particles node_state_grid[hmg.boundary_nodes] = 8 # Place wall particles to form the base of the silo, initially closed tan30deg = numpy.tan(numpy.pi/6.) rampy1 = silo_y0-hmg.node_x*tan30deg rampy2 = silo_y0-((nc*0.866-1.)-hmg.node_x)*tan30deg rampy = numpy.maximum(rampy1, rampy2) (ramp_nodes, ) = numpy.where(numpy.logical_and(hmg.node_y>rampy-0.5, \ hmg.node_y<rampy+0.5)) node_state_grid[ramp_nodes] = 8 # Seed the grid interior with randomly oriented particles for i in hmg.core_nodes: if hmg.node_y[i]>rampy[i] and random.random()<p_init: node_state_grid[i] = random.randint(1, 7) # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN # Run with closed silo current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=plot_every_transition, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # Open the silo xmid = nc*0.866*0.5 for i in range(hmg.number_of_nodes): if node_state_grid[i]==8 and hmg.node_x[i]>(xmid-silo_opening_half_width) \ and hmg.node_x[i]<(xmid+silo_opening_half_width) \ and hmg.node_y[i]>0: node_state_grid[i]=0 # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # Re-run with open silo current_time = 0.0 while current_time < 5*run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=plot_every_transition, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 128 nc = 128 fracture_spacing = 10 # fracture spacing, cell widths plot_interval = 0.25 run_duration = 4.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Set up the states and pair transitions. # Transition data here represent a body of fractured rock, with rock # represented by nodes with state 0, and saprolite (weathered rock) # represented by nodes with state 1. Node pairs (links) with 0-1 or 1-0 # can undergo a transition to 1-1, representing chemical weathering of the # rock. ns_dict = { 0 : 'rock', 1 : 'saprolite' } xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # Initialize the node-state array as a "fracture grid" in which randomly # oriented fractures are represented as lines of saprolite embedded in # bedrock. node_state_grid[:] = make_frac_grid(fracture_spacing, model_grid=mg) # Create the CA model ca = RasterLCA(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print('{0:.0f}'.format(ca.node_state[n]), end=' ') print() # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print('Current sim time',current_time,'(',100*current_time/run_duration,'%)') next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) #, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print('{0:.0f}'.format(ca.node_state[n]), end=' ') print() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 21 nc = 21 plot_interval = 0.5 run_duration = 25.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True) # Close the grid boundaries hmg.set_closed_nodes(hmg.open_boundary_nodes) # Set up the states and pair transitions. # Transition data here represent the disease status of a population. ns_dict = { 0 : 'fluid', 1 : 'grain' } xn_list = setup_transition_list() # Create data and initialize values. We start with the 3 middle columns full # of grains, and the others empty. node_state_grid = hmg.add_zeros('node', 'node_state_grid') middle = 0.25*(nc-1)*sqrt(3) is_middle_cols = logical_and(hmg.node_x<middle+1., hmg.node_x>middle-1.) node_state_grid[where(is_middle_cols)[0]] = 1 # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 41 nc = 61 g = 0.8 f = 1.0 plot_interval = 1.0 run_duration = 200.0 report_interval = 5.0 # report interval, in real-time seconds p_init = 0.4 # probability that a cell is occupied at start plot_every_transition = False # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True) # Close the grid boundaries #hmg.set_closed_nodes(hmg.open_boundary_nodes) # Set up the states and pair transitions. # Transition data here represent particles moving on a lattice: one state # per direction (for 6 directions), plus an empty state, a stationary # state, and a wall state. ns_dict = { 0: 'empty', 1: 'moving up', 2: 'moving right and up', 3: 'moving right and down', 4: 'moving down', 5: 'moving left and down', 6: 'moving left and up', 7: 'rest', 8: 'wall' } xn_list = setup_transition_list(g, f) # Create data and initialize values. node_state_grid = hmg.add_zeros('node', 'node_state_grid') # Make the grid boundary all wall particles node_state_grid[hmg.boundary_nodes] = 8 # Seed the grid interior with randomly oriented particles for i in hmg.core_nodes: if random.random() < p_init: node_state_grid[i] = random.randint(1, 7) # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=plot_every_transition, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 10 nc = 10 plot_interval = 0.25 run_duration = 40.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. # Transition data here represent a body of fractured rock, with rock # represented by nodes with state 0, and saprolite (weathered rock) # represented by nodes with state 1. Node pairs (links) with 0-1 or 1-0 # can undergo a transition to 1-1, representing chemical weathering of the # rock. ns_dict = { 0 : 'air', 1 : 'particle' } xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) node_state_grid[where(mg.node_y>nr-3)[0]] = 1 # Create the CA model ca = OrientedRasterLCA(mg, ns_dict, xn_list, node_state_grid) #ca = RasterLCA(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print '{0:.0f}'.format(ca.node_state[n]), print # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 updated = False while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) #, plotter=ca_plotter) current_time += plot_interval # Add a bunch of particles if current_time > run_duration/2. and not updated: print 'updating...' node_state_grid[where(ca.grid.node_y>(nc/2.0))[0]] = 1 ca.update_link_states_and_transitions(current_time) updated = True # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print '{0:.0f}'.format(ca.node_state[n]), print # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 80 # number of rows in grid nc = 50 # number of columns in grid plot_interval = 0.5 # time interval for plotting, sec run_duration = 0.0 # duration of run, sec report_interval = 10.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = { 0 : 'fluid', 1 : 'particle' } xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # Initialize the node-state array: here, the initial condition is a pile of # resting grains at the bottom of a container. bottom_rows = where(mg.node_y<0.1*nr)[0] node_state_grid[bottom_rows] = 1 # For visual display purposes, set all boundary nodes to fluid node_state_grid[mg.closed_boundary_nodes] = 0 # Create the CA model ca = RasterLCA(mg, ns_dict, xn_list, node_state_grid) grain = '#5F594D' fluid = '#D0E4F2' clist = [fluid,grain] my_cmap = matplotlib.colors.ListedColormap(clist) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca, cmap=my_cmap) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 20 nc = 20 plot_interval = 2.0 run_duration = 2.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0) # Set up the states and pair transitions. # Transition data here represent the disease status of a population. ns_dict = { 0 : 'susceptible', 1 : 'infectious', 2: 'recovered' } xn_list = setup_transition_list() # Create data and initialize values node_state_grid = hmg.add_zeros('node', 'node_state_grid') wid = nc-1.0 ht = (nr-1.0)*0.866 is_middle_rows = logical_and(hmg.node_y>=0.4*ht, hmg.node_y<=0.5*ht) is_middle_cols = logical_and(hmg.node_x>=0.4*wid, hmg.node_x<=0.6*wid) middle_area = where(logical_and(is_middle_rows, is_middle_cols))[0] node_state_grid[middle_area] = 1 node_state_grid[0] = 2 # to force full color range, set lower left to 'recovered' # Create the CA model ca = HexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print('Current sim time',current_time,'(',100*current_time/run_duration,'%)') next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=True, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 128 nc = 128 fracture_spacing = 10 # fracture spacing, cell widths plot_interval = 0.25 run_duration = 4.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Set up the states and pair transitions. # Transition data here represent a body of fractured rock, with rock # represented by nodes with state 0, and saprolite (weathered rock) # represented by nodes with state 1. Node pairs (links) with 0-1 or 1-0 # can undergo a transition to 1-1, representing chemical weathering of the # rock. ns_dict = {0: 'rock', 1: 'saprolite'} xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # Initialize the node-state array as a "fracture grid" in which randomly # oriented fractures are represented as lines of saprolite embedded in # bedrock. node_state_grid[:] = make_frac_grid(fracture_spacing, model_grid=mg) # Create the CA model ca = RasterLCA(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print '{0:.0f}'.format(ca.node_state[n]), print # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=False) #, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print '{0:.0f}'.format(ca.node_state[n]), print # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 20 nc = 20 plot_interval = 2.0 run_duration = 2.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0) # Set up the states and pair transitions. # Transition data here represent the disease status of a population. ns_dict = {0: 'susceptible', 1: 'infectious', 2: 'recovered'} xn_list = setup_transition_list() # Create data and initialize values node_state_grid = hmg.add_zeros('node', 'node_state_grid') wid = nc - 1.0 ht = (nr - 1.0) * 0.866 is_middle_rows = logical_and(hmg.node_y >= 0.4 * ht, hmg.node_y <= 0.5 * ht) is_middle_cols = logical_and(hmg.node_x >= 0.4 * wid, hmg.node_x <= 0.6 * wid) middle_area = where(logical_and(is_middle_rows, is_middle_cols))[0] node_state_grid[middle_area] = 1 node_state_grid[ 0] = 2 # to force full color range, set lower left to 'recovered' # Create the CA model ca = HexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=True, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 41 nc = 61 plot_interval = 1.0 run_duration = 100.0 report_interval = 5.0 # report interval, in real-time seconds p_init = 0.1 # probability that a cell is occupied at start plot_every_transition = False # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True) # Close the grid boundaries #hmg.set_closed_nodes(hmg.open_boundary_nodes) # Set up the states and pair transitions. # Transition data here represent particles moving on a lattice: one state # per direction (for 6 directions), plus an empty state, a stationary # state, and a wall state. ns_dict = { 0 : 'empty', 1 : 'moving up', 2 : 'moving right and up', 3 : 'moving right and down', 4 : 'moving down', 5 : 'moving left and down', 6 : 'moving left and up', 7 : 'rest', 8 : 'wall'} xn_list = setup_transition_list() # Create data and initialize values. node_state_grid = hmg.add_zeros('node', 'node_state_grid', dtype=int) # Make the grid boundary all wall particles node_state_grid[hmg.boundary_nodes] = 8 # Seed the grid interior with randomly oriented particles for i in hmg.core_nodes: if random.random()<p_init: node_state_grid[i] = random.randint(1, 7) # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # Create an array to store the numbers of states at each plot interval nstates = zeros((9, int(run_duration/plot_interval))) k = 0 # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print('Current sim time',current_time,'(',100*current_time/run_duration,'%)') next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=plot_every_transition, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # Record numbers in each state nstates[:,k] = bincount(node_state_grid) k += 1 # FINALIZE # Plot ca_plotter.finalize() # Display the numbers of each state fig, ax = subplots() for i in range(1, 8): plot(arange(plot_interval, run_duration+plot_interval, plot_interval), nstates[i,:], label=ns_dict[i]) ax.legend() xlabel('Time') ylabel('Number of particles in state') title('Particle distribution by state') axis([0, run_duration, 0, 2*nstates[7,0]]) show()
def main(): # INITIALIZE # User-defined parameters nr = 80 nc = 80 plot_interval = 2 run_duration = 200 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = {0: 'fluid', 1: 'particle'} xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # Initialize the node-state array middle_rows = where( bitwise_and(mg.node_y > 0.45 * nr, mg.node_y < 0.55 * nr))[0] node_state_grid[middle_rows] = 1 # Create the CA model ca = OrientedRasterLCA(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print '{0:.0f}'.format(ca.node_state[n]), print # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=False) #, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print '{0:.0f}'.format(ca.node_state[n]), print # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 80 nc = 80 plot_interval = 2 run_duration = 200 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = {0: "fluid", 1: "particle"} xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros("node", "node_state_map", dtype=int) # Initialize the node-state array middle_rows = where(bitwise_and(mg.node_y > 0.45 * nr, mg.node_y < 0.55 * nr))[0] node_state_grid[middle_rows] = 1 # Create the CA model ca = OrientedRasterLCA(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print("{0:.0f}".format(ca.node_state[n]), end=" ") print() # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print("Current sim time", current_time, "(", 100 * current_time / run_duration, "%)") next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=False) # , plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print("{0:.0f}".format(ca.node_state[n]), end=" ") print() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 41 nc = 61 plot_interval = 1.0 run_duration = 100.0 report_interval = 5.0 # report interval, in real-time seconds p_init = 0.1 # probability that a cell is occupied at start plot_every_transition = False # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True) # Close the grid boundaries #hmg.set_closed_nodes(hmg.open_boundary_nodes) # Set up the states and pair transitions. # Transition data here represent particles moving on a lattice: one state # per direction (for 6 directions), plus an empty state, a stationary # state, and a wall state. ns_dict = { 0 : 'empty', 1 : 'moving up', 2 : 'moving right and up', 3 : 'moving right and down', 4 : 'moving down', 5 : 'moving left and down', 6 : 'moving left and up', 7 : 'rest', 8 : 'wall'} xn_list = setup_transition_list() # Create data and initialize values. node_state_grid = hmg.add_zeros('node', 'node_state_grid', dtype=int) # Make the grid boundary all wall particles node_state_grid[hmg.boundary_nodes] = 8 # Seed the grid interior with randomly oriented particles for i in hmg.core_nodes: if random.random()<p_init: node_state_grid[i] = random.randint(1, 7) # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # Create an array to store the numbers of states at each plot interval nstates = zeros((9, int(run_duration/plot_interval))) k = 0 # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=plot_every_transition, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # Record numbers in each state nstates[:,k] = bincount(node_state_grid) k += 1 # FINALIZE # Plot ca_plotter.finalize() # Display the numbers of each state fig, ax = subplots() for i in range(1, 8): plot(arange(plot_interval, run_duration+plot_interval, plot_interval), nstates[i,:], label=ns_dict[i]) ax.legend() xlabel('Time') ylabel('Number of particles in state') title('Particle distribution by state') axis([0, run_duration, 0, 2*nstates[7,0]]) show()
def main(): # INITIALIZE # User-defined parameters nr = 41 nc = 61 g = 0.8 f = 1.0 plot_interval = 1.0 run_duration = 200.0 report_interval = 5.0 # report interval, in real-time seconds p_init = 0.4 # probability that a cell is occupied at start plot_every_transition = False # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create a grid hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True) # Close the grid boundaries #hmg.set_closed_nodes(hmg.open_boundary_nodes) # Set up the states and pair transitions. # Transition data here represent particles moving on a lattice: one state # per direction (for 6 directions), plus an empty state, a stationary # state, and a wall state. ns_dict = { 0 : 'empty', 1 : 'moving up', 2 : 'moving right and up', 3 : 'moving right and down', 4 : 'moving down', 5 : 'moving left and down', 6 : 'moving left and up', 7 : 'rest', 8 : 'wall'} xn_list = setup_transition_list(g, f) # Create data and initialize values. node_state_grid = hmg.add_zeros('node', 'node_state_grid') # Make the grid boundary all wall particles node_state_grid[hmg.boundary_nodes] = 8 # Seed the grid interior with randomly oriented particles for i in hmg.core_nodes: if random.random()<p_init: node_state_grid[i] = random.randint(1, 7) # Create the CA model ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=plot_every_transition, plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize()