def main():

    # INITIALIZE

    # User-defined parameters
    nr = 41
    nc = 61
    g = 0.8
    f = 1.0
    plot_interval = 1.0
    run_duration = 200.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.4  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr,
                       nc,
                       1.0,
                       orientation='vertical',
                       reorient_links=True)

    # Close the grid boundaries
    #hmg.set_closed_nodes(hmg.open_boundary_nodes)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = {
        0: 'empty',
        1: 'moving up',
        2: 'moving right and up',
        3: 'moving right and down',
        4: 'moving down',
        5: 'moving left and down',
        6: 'moving left and up',
        7: 'rest',
        8: 'wall'
    }
    xn_list = setup_transition_list(g, f)

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if random.random() < p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time', current_time, '(',
                  100 * current_time / run_duration, '%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval,
               ca.node_state,
               plot_each_transition=plot_every_transition,
               plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

    # FINALIZE

    # Plot
    ca_plotter.finalize()
示例#2
0
def main():
    
    # INITIALIZE
    
    # User-defined parameters
    nr = 21
    nc = 21
    plot_interval = 0.5
    run_duration = 25.0
    report_interval = 5.0  # report interval, in real-time seconds
    
    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)
    
    # Close the grid boundaries
    hmg.set_closed_nodes(hmg.open_boundary_nodes)
    
    # Set up the states and pair transitions.
    # Transition data here represent the disease status of a population.
    ns_dict = { 0 : 'fluid', 1 : 'grain' }
    xn_list = setup_transition_list()

    # Create data and initialize values. We start with the 3 middle columns full
    # of grains, and the others empty.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')
    middle = 0.25*(nc-1)*sqrt(3)
    is_middle_cols = logical_and(hmg.node_x<middle+1., hmg.node_x>middle-1.)
    node_state_grid[where(is_middle_cols)[0]] = 1
    
    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)
    
    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)
    
    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:
        
        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time',current_time,'(',100*current_time/run_duration,'%)')
            next_report = current_real_time + report_interval
        
        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state, 
               plot_each_transition=False)
        current_time += plot_interval
        
        # Plot the current grid
        ca_plotter.update_plot()


    # FINALIZE

    # Plot
    ca_plotter.finalize()
示例#3
0
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 41
    nc = 61
    plot_interval = 1.0
    run_duration = 100.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.1  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr,
                       nc,
                       1.0,
                       orientation='vertical',
                       reorient_links=True)

    # Close the grid boundaries
    #hmg.set_closed_nodes(hmg.open_boundary_nodes)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = {
        0: 'empty',
        1: 'moving up',
        2: 'moving right and up',
        3: 'moving right and down',
        4: 'moving down',
        5: 'moving left and down',
        6: 'moving left and up',
        7: 'rest',
        8: 'wall'
    }
    xn_list = setup_transition_list()

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid', dtype=int)

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if random.random() < p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # Create an array to store the numbers of states at each plot interval
    nstates = zeros((9, int(run_duration / plot_interval)))
    k = 0

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time', current_time, '(',
                  100 * current_time / run_duration, '%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval,
               ca.node_state,
               plot_each_transition=plot_every_transition,
               plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

        # Record numbers in each state
        nstates[:, k] = bincount(node_state_grid)
        k += 1

    # FINALIZE

    # Plot
    ca_plotter.finalize()

    # Display the numbers of each state
    fig, ax = subplots()
    for i in range(1, 8):
        plot(arange(plot_interval, run_duration + plot_interval,
                    plot_interval),
             nstates[i, :],
             label=ns_dict[i])
    ax.legend()
    xlabel('Time')
    ylabel('Number of particles in state')
    title('Particle distribution by state')
    axis([0, run_duration, 0, 2 * nstates[7, 0]])
    show()
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 41
    nc = 61
    g = 0.05
    plot_interval = 1.0
    run_duration = 100.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.1  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)

    # Close the grid boundaries
    #hmg.set_closed_nodes(hmg.open_boundary_nodes)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = { 0 : 'empty',
                1 : 'moving up',
                2 : 'moving right and up',
                3 : 'moving right and down',
                4 : 'moving down',
                5 : 'moving left and down',
                6 : 'moving left and up',
                7 : 'rest',
                8 : 'wall'}
    xn_list = setup_transition_list(g)

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if random.random()<p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time',current_time,'(',100*current_time/run_duration,'%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state,
               plot_each_transition=plot_every_transition, plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()


    # FINALIZE

    # Plot
    ca_plotter.finalize()
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 41
    nc = 61
    g = 0.8
    f = 1.0
    silo_y0 = 30.0
    silo_opening_half_width = 6
    plot_interval = 1.0
    run_duration = 80.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.4  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = { 0 : 'empty',
                1 : 'moving up',
                2 : 'moving right and up',
                3 : 'moving right and down',
                4 : 'moving down',
                5 : 'moving left and down',
                6 : 'moving left and up',
                7 : 'rest',
                8 : 'wall'}
    xn_list = setup_transition_list(g, f)

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Place wall particles to form the base of the silo, initially closed
    tan30deg = numpy.tan(numpy.pi/6.)
    rampy1 = silo_y0-hmg.node_x*tan30deg
    rampy2 = silo_y0-((nc*0.866-1.)-hmg.node_x)*tan30deg
    rampy = numpy.maximum(rampy1, rampy2)
    (ramp_nodes, ) = numpy.where(numpy.logical_and(hmg.node_y>rampy-0.5, \
                                   hmg.node_y<rampy+0.5))
    node_state_grid[ramp_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if hmg.node_y[i]>rampy[i] and random.random()<p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN

    # Run with closed silo
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time '+str(current_time)+' ('+str(100*current_time/run_duration)+'%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state,
               plot_each_transition=plot_every_transition, plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

    # Open the silo
    xmid = nc*0.866*0.5
    for i in range(hmg.number_of_nodes):
        if node_state_grid[i]==8 and hmg.node_x[i]>(xmid-silo_opening_half_width) \
           and hmg.node_x[i]<(xmid+silo_opening_half_width) \
           and hmg.node_y[i]>0:
               node_state_grid[i]=0

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # Re-run with open silo
    current_time = 0.0
    while current_time < 5*run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time '+str(current_time)+' ('+str(100*current_time/run_duration)+'%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state,
               plot_each_transition=plot_every_transition, plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()


    # FINALIZE

    # Plot
    ca_plotter.finalize()
示例#6
0
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 52
    nc = 120
    plot_interval = 1.0
    run_duration = 100.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.1  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)

    # Close the grid boundaries
    #hmg.set_closed_nodes(hmg.open_boundary_nodes)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = { 0 : 'empty',
                1 : 'moving up',
                2 : 'moving right and up',
                3 : 'moving right and down',
                4 : 'moving down',
                5 : 'moving left and down',
                6 : 'moving left and up',
                7 : 'rest',
                8 : 'wall'}
    xn_list = setup_transition_list()

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid', dtype=int)

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if random.random()<p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Set up a color map for plotting
    import matplotlib
    clist = [ (1.0, 1.0, 1.0),   # empty = white
              (1.0, 0.0, 0.0),   # up = red
              (1.0, 1.0, 0.0),   # right-up = yellow
              (0.0, 1.0, 0.0),   # down-up = green
              (0.0, 1.0, 1.0),   # down = cyan
              (0.0, 0.0, 1.0),   # left-down = blue
              (1.0, 0.0, 1.0),   # left-up = magenta
              (0.5, 0.5, 0.5),   # resting = gray
              (0.0, 0.0, 0.0) ]   # wall = black
    my_cmap = matplotlib.colors.ListedColormap(clist)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca, cmap=my_cmap)

    # Plot the initial grid
    ca_plotter.update_plot()

    # Create an array to store the numbers of states at each plot interval
    nstates = zeros((9, int(run_duration/plot_interval)))
    k = 0

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time',current_time,'(',100*current_time/run_duration,'%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state,
               plot_each_transition=plot_every_transition, plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()
        axis('off')

        # Record numbers in each state
        nstates[:,k] = bincount(node_state_grid)
        k += 1

    # FINALIZE

    # Plot
    ca_plotter.finalize()

    # Display the numbers of each state
    fig, ax = subplots()
    for i in range(1, 8):
        plot(arange(plot_interval, run_duration+plot_interval, plot_interval), nstates[i,:], label=ns_dict[i], color=clist[i])
    ax.legend()
    xlabel('Time')
    ylabel('Number of particles in state')
    title('Particle distribution by state')
    axis([0, run_duration, 0, 2*nstates[7,0]])
    show()
示例#7
0
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 41
    nc = 61
    g = 1.0
    f = 0.7
    silo_y0 = 30.0
    silo_opening_half_width = 6
    plot_interval = 10.0
    run_duration = 240.0
    report_interval = 300.0  # report interval, in real-time seconds
    p_init = 0.4  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr,
                       nc,
                       1.0,
                       orientation='vertical',
                       shape='rect',
                       reorient_links=True)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = {
        0: 'empty',
        1: 'moving up',
        2: 'moving right and up',
        3: 'moving right and down',
        4: 'moving down',
        5: 'moving left and down',
        6: 'moving left and up',
        7: 'rest',
        8: 'wall'
    }
    xn_list = setup_transition_list(g, f)

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Place wall particles to form the base of the silo, initially closed
    tan30deg = numpy.tan(numpy.pi / 6.)
    rampy1 = silo_y0 - hmg.node_x * tan30deg
    rampy2 = silo_y0 - ((nc * 0.866 - 1.) - hmg.node_x) * tan30deg
    rampy = numpy.maximum(rampy1, rampy2)
    (ramp_nodes, ) = numpy.where(numpy.logical_and(hmg.node_y>rampy-0.5, \
                                   hmg.node_y<rampy+0.5))
    node_state_grid[ramp_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if hmg.node_y[i] > rampy[i] and random.random() < p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    import matplotlib
    rock = (0.0, 0.0, 0.0)  #'#5F594D'
    sed = (0.6, 0.6, 0.6)  #'#A4874B'
    #sky = '#CBD5E1'
    #sky = '#85A5CC'
    sky = (1.0, 1.0, 1.0)  #'#D0E4F2'
    mob = (0.3, 0.3, 0.3)  #'#D98859'
    #mob = '#DB764F'
    #mob = '#FFFF00'
    #sed = '#CAAE98'
    #clist = [(0.5, 0.9, 0.9),mob, mob, mob, mob, mob, mob,'#CD6839',(0.3,0.3,0.3)]
    clist = [sky, mob, mob, mob, mob, mob, mob, sed, rock]
    my_cmap = matplotlib.colors.ListedColormap(clist)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca, cmap=my_cmap)
    k = 0

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN

    # Run with closed silo
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)'
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval,
               ca.node_state,
               plot_each_transition=plot_every_transition,
               plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

    # Open the silo
    xmid = nc * 0.866 * 0.5
    for i in range(hmg.number_of_nodes):
        if node_state_grid[i]==8 and hmg.node_x[i]>(xmid-silo_opening_half_width) \
           and hmg.node_x[i]<(xmid+silo_opening_half_width) \
           and hmg.node_y[i]>0 and hmg.node_y[i]<38.0:
            node_state_grid[i] = 0

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # Re-run with open silo
    savefig('silo' + str(k) + '.png')
    k += 1
    current_time = 0.0
    while current_time < 5 * run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)'
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval,
               ca.node_state,
               plot_each_transition=plot_every_transition,
               plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()
        savefig('silo' + str(k) + '.png')
        k += 1

    # FINALIZE

    # Plot
    ca_plotter.finalize()