def main():

    # INITIALIZE

    # User-defined parameters
    nr = 80
    nc = 80
    plot_interval = 2
    run_duration = 200
    report_interval = 5.0  # report interval, in real-time seconds

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create grid
    mg = RasterModelGrid(nr, nc, 1.0)

    # Make the boundaries be walls
    mg.set_closed_boundaries_at_grid_edges(True, True, True, True)

    # Set up the states and pair transitions.
    ns_dict = {0: 'fluid', 1: 'particle'}
    xn_list = setup_transition_list()

    # Create the node-state array and attach it to the grid
    node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int)

    # Initialize the node-state array
    middle_rows = where(
        bitwise_and(mg.node_y > 0.45 * nr, mg.node_y < 0.55 * nr))[0]
    node_state_grid[middle_rows] = 1

    # Create the CA model
    ca = OrientedRasterLCA(mg, ns_dict, xn_list, node_state_grid)

    # Debug output if needed
    if _DEBUG:
        n = ca.grid.number_of_nodes
        for r in range(ca.grid.number_of_node_rows):
            for c in range(ca.grid.number_of_node_columns):
                n -= 1
                print '{0:.0f}'.format(ca.node_state[n]),
            print

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)'
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval,
               ca.node_state,
               plot_each_transition=False)  #, plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

        # for debugging
        if _DEBUG:
            n = ca.grid.number_of_nodes
            for r in range(ca.grid.number_of_node_rows):
                for c in range(ca.grid.number_of_node_columns):
                    n -= 1
                    print '{0:.0f}'.format(ca.node_state[n]),
                print

    # FINALIZE

    # Plot
    ca_plotter.finalize()
示例#2
0
def main():
    
    # INITIALIZE

    # User-defined parameters
    nr = 10
    nc = 10
    plot_interval = 0.25
    run_duration = 40.0
    report_interval = 5.0  # report interval, in real-time seconds
    
    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create grid
    mg = RasterModelGrid(nr, nc, 1.0)
    mg.set_closed_boundaries_at_grid_edges(True, True, True, True)
    
    # Set up the states and pair transitions.
    # Transition data here represent a body of fractured rock, with rock 
    # represented by nodes with state 0, and saprolite (weathered rock)
    # represented by nodes with state 1. Node pairs (links) with 0-1 or 1-0
    # can undergo a transition to 1-1, representing chemical weathering of the
    # rock.
    ns_dict = { 0 : 'air', 1 : 'particle' }
    xn_list = setup_transition_list()

    # Create the node-state array and attach it to the grid
    node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int)
    node_state_grid[where(mg.node_y>nr-3)[0]] = 1    
    
        # Create the CA model
    ca = OrientedRasterLCA(mg, ns_dict, xn_list, node_state_grid)
    #ca = RasterLCA(mg, ns_dict, xn_list, node_state_grid)
    
    # Debug output if needed    
    if _DEBUG:
        n = ca.grid.number_of_nodes
        for r in range(ca.grid.number_of_node_rows):
            for c in range(ca.grid.number_of_node_columns):
                n -= 1
                print '{0:.0f}'.format(ca.node_state[n]),
            print

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)
    
    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    updated = False
    while current_time < run_duration:
        
        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)'
            next_report = current_real_time + report_interval
        
        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state, 
               plot_each_transition=False) #, plotter=ca_plotter)
        current_time += plot_interval
        
        # Add a bunch of particles
        if current_time > run_duration/2. and not updated:
            print 'updating...'
            node_state_grid[where(ca.grid.node_y>(nc/2.0))[0]] = 1
            ca.update_link_states_and_transitions(current_time)
            updated = True
        
        # Plot the current grid
        ca_plotter.update_plot()

        # for debugging        
        if _DEBUG:
            n = ca.grid.number_of_nodes
            for r in range(ca.grid.number_of_node_rows):
                for c in range(ca.grid.number_of_node_columns):
                    n -= 1
                    print '{0:.0f}'.format(ca.node_state[n]),
                print


    # FINALIZE

    # Plot
    ca_plotter.finalize()
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 80
    nc = 80
    plot_interval = 2
    run_duration = 200
    report_interval = 5.0  # report interval, in real-time seconds

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create grid
    mg = RasterModelGrid(nr, nc, 1.0)

    # Make the boundaries be walls
    mg.set_closed_boundaries_at_grid_edges(True, True, True, True)

    # Set up the states and pair transitions.
    ns_dict = {0: "fluid", 1: "particle"}
    xn_list = setup_transition_list()

    # Create the node-state array and attach it to the grid
    node_state_grid = mg.add_zeros("node", "node_state_map", dtype=int)

    # Initialize the node-state array
    middle_rows = where(bitwise_and(mg.node_y > 0.45 * nr, mg.node_y < 0.55 * nr))[0]
    node_state_grid[middle_rows] = 1

    # Create the CA model
    ca = OrientedRasterLCA(mg, ns_dict, xn_list, node_state_grid)

    # Debug output if needed
    if _DEBUG:
        n = ca.grid.number_of_nodes
        for r in range(ca.grid.number_of_node_rows):
            for c in range(ca.grid.number_of_node_columns):
                n -= 1
                print("{0:.0f}".format(ca.node_state[n]), end=" ")
            print()

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print("Current sim time", current_time, "(", 100 * current_time / run_duration, "%)")
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=False)  # , plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

        # for debugging
        if _DEBUG:
            n = ca.grid.number_of_nodes
            for r in range(ca.grid.number_of_node_rows):
                for c in range(ca.grid.number_of_node_columns):
                    n -= 1
                    print("{0:.0f}".format(ca.node_state[n]), end=" ")
                print()

    # FINALIZE

    # Plot
    ca_plotter.finalize()