示例#1
0
def test_route_to_multiple_error_raised_watershed_mask():
    mg = RasterModelGrid((10, 10))
    z = mg.add_zeros("topographic__elevation", at="node")
    z += mg.x_of_node + mg.y_of_node
    fa = FlowAccumulator(mg, flow_director="MFD")
    fa.run_one_step()

    with pytest.raises(NotImplementedError):
        get_watershed_mask(mg, 10)
示例#2
0
def test_route_to_multiple_error_raised_watershed_mask():
    mg = RasterModelGrid((10, 10))
    z = mg.add_zeros("node", "topographic__elevation")
    z += mg.x_of_node + mg.y_of_node
    fa = FlowAccumulator(mg, flow_director="MFD")
    fa.run_one_step()

    with pytest.raises(NotImplementedError):
        get_watershed_mask(mg, 10)
示例#3
0
def hypsometric_integral(grid, outlet_id):
    """Calculate the hypsometric integral for the model grid.

    The hypsometric integral :math:`I` is defined as

    .. math::

        I = \\frac{\\frac{1}{N} \\sum_{i=0}^{N}
        \\left( z - \\min \\left( z\\right) \\right)}
        {\\max \\left(z\\right) - \\min \\left( z \\right)}

    Where :math:`z` is the set of elevation values, and :math:`N` is the number
    of elevation values.

    Parameters
    ----------
    grid : Landlab model grid
    outlet_id : int
        Outlet id of the watershed.

    Returns
    -------
    I : float
        The hypsometric integral.

    Examples
    --------
    First an example that only uses the ``hypsometric_integral`` function.

    >>> from landlab import RasterModelGrid
    >>> from landlab.components import FlowAccumulator
    >>> from umami.calculations import hypsometric_integral
    >>> grid = RasterModelGrid((10, 10))
    >>> z = grid.add_zeros("node", "topographic__elevation")
    >>> z += grid.x_of_node + grid.y_of_node
    >>> fa = FlowAccumulator(grid)
    >>> fa.run_one_step()
    >>> hypsometric_integral(grid, 1)
    0.5

    Next, the same calculations are shown as part of an umami ``Metric``.

    >>> from io import StringIO
    >>> from umami import Metric
    >>> file_like=StringIO('''
    ... hi:
    ...     _func: hypsometric_integral
    ...     outlet_id: 1
    ... ''')
    >>> metric = Metric(grid)
    >>> metric.add_from_file(file_like)
    >>> metric.names
    ['hi']
    >>> metric.calculate()
    >>> metric.values
    [0.5]
    """
    # Get just those elevation values that are within the watershed
    mask = get_watershed_mask(grid, outlet_id)
    vals = grid.at_node["topographic__elevation"][mask]

    # Get min and max
    min_val = np.amin(vals)
    max_val = np.amax(vals)

    # Calc and return the hypsometric_integral
    return np.mean(vals - min_val) / (max_val - min_val)
示例#4
0
文件: kstest.py 项目: mcflugen/umami
def kstest_watershed(model_grid, data_grid, field, outlet_id):
    """Calculate an Kolmogorov-Smirnov test for a watershed.

    ``kstest_watershed`` calculates the Kolmogorov-Smirnov test for
    goodness of fit using the function ``ks_2samp`` from ``scipy.stats``.

    Given an *outlet_id* it identifes a watershed mask for the *data_grid*. It
    then uses that mask on both the *data_grid* and the *model_grid*.

    If the field is "flow__distance", then this performs a KS test of the width
    function.

    Parameters
    ----------
    model_grid : Landlab model grid
    data_grid : Landlab model grid
    field : str
        An at-node Landlab grid field that is present on the model grid.
    outlet_id : int

    Returns
    -------
    out : float
        The KS test statistic

    Examples
    --------
    First an example that only uses the ``kstest`` function.

    >>> import numpy as np
    >>> from landlab import RasterModelGrid
    >>> from landlab.components import FlowAccumulator
    >>> from umami.calculations import kstest_watershed
    >>> np.random.seed(42)
    >>> model = RasterModelGrid((10, 10))
    >>> z_model = model.add_zeros("node", "topographic__elevation")
    >>> z_model += model.x_of_node + model.y_of_node
    >>> data = RasterModelGrid((10, 10))
    >>> z_data = data.add_zeros("node", "topographic__elevation")
    >>> z_data +=  data.x_of_node + data.y_of_node
    >>> z_data[data.core_nodes] += np.random.random(data.core_nodes.shape)
    >>> data_fa = FlowAccumulator(data)
    >>> data_fa.run_one_step()
    >>> model_fa = FlowAccumulator(model)
    >>> model_fa.run_one_step()
    >>> np.round(
    ...     kstest_watershed(
    ...         model,
    ...         data,
    ...         "topographic__elevation",
    ...         outlet_id=1),
    ...     decimals=3)
    0.5

    Next, the same calculations are shown as part of an umami ``Residual``.

    >>> from io import StringIO
    >>> from umami import Residual
    >>> file_like=StringIO('''
    ... ksw:
    ...     _func: kstest_watershed
    ...     outlet_id: 1
    ...     field: topographic__elevation
    ... ''')
    >>> residual = Residual(model, data)
    >>> residual.add_from_file(file_like)
    >>> residual.names
    ['ksw']
    >>> residual.calculate()
    >>> np.round(residual.values, decimals=3)
    array([ 0.5])
    """
    mask = get_watershed_mask(data_grid, outlet_id)
    model_vals = model_grid.at_node[field][mask]
    data_vals = data_grid.at_node[field][mask]

    d, _ = ks_2samp(model_vals, data_vals)
    return d
示例#5
0
def watershed_aggregation(grid, field, outlet_id, method, **kwds):
    """Aggregate a field value over a watershed.

    ``watershed_aggregation`` calculates aggregate values on the nodes in a
    watershed that drain to *outlet_id*. It supports all methods in the
    `numpy`_ namespace that reduce an array to a scalar.

    .. _numpy: https://numpy.org

    Parameters
    ----------
    grid : Landlab model grid
    field : str
        An at-node Landlab grid field that is present on the model grid.
    outlet_id : int
        Outlet id of the watershed.
    method : str
        The name of a numpy namespace method.
    **kwds
        Any additional keyword arguments needed by the method.

    Returns
    -------
    out : float
        The aggregate value.

    Examples
    --------
    First an example that only uses the ``watershed_aggregation`` function.

    >>> from landlab import RasterModelGrid
    >>> from landlab.components import FlowAccumulator
    >>> from umami.calculations import watershed_aggregation
    >>> grid = RasterModelGrid((10, 10))
    >>> z = grid.add_zeros("node", "topographic__elevation")
    >>> z += grid.x_of_node + grid.y_of_node
    >>> fa = FlowAccumulator(grid)
    >>> fa.run_one_step()

    ``watershed_aggregation`` supports all functions in the `numpy`_ namespace.
    Here we show `mean`_ and `percentile`_. The latter of which takes an
    additional argument, *q*.

    .. _numpy: https://numpy.org
    .. _mean: https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
    .. _percentile: https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html


    >>> watershed_aggregation(grid, "topographic__elevation", 1,  "mean")
    5.0
    >>> watershed_aggregation(
    ... grid,
    ... "topographic__elevation",
    ... 1,
    ... "percentile",
    ... q=10)
    1.8

    Next, the same calculations are shown as part of an umami ``Metric``.

    >>> from io import StringIO
    >>> from umami import Metric
    >>> file_like=StringIO('''
    ... oid1_mean:
    ...     _func: watershed_aggregation
    ...     outlet_id: 1
    ...     method: mean
    ...     field: topographic__elevation
    ... oid1_10thptile:
    ...     _func: watershed_aggregation
    ...     outlet_id: 1
    ...     method: percentile
    ...     field: topographic__elevation
    ...     q: 10
    ... ''')
    >>> metric = Metric(grid)
    >>> metric.add_from_file(file_like)
    >>> metric.names
    ['oid1_mean', 'oid1_10thptile']
    >>> metric.calculate()
    >>> metric.values
    [5.0, 1.8]
    """
    mask = get_watershed_mask(grid, outlet_id)
    vals = grid.at_node[field][mask]
    return _aggregate(vals, method, **kwds)