def vehicle_detect_data_summary(): clf = classifier.Classifier() clf.summarize_dataset() cars, not_cars = clf._get_dataset() single_car, single_not_car = image.load_img( random.choice(cars)), image.load_img(random.choice(not_cars)) plotter.Plotter(True).plot_images(single_car, single_not_car)
def vehicle_detect_hog_sample(): clf = classifier.Classifier() cars, not_cars = clf._get_dataset() single_car = image.convert_color(image.load_img(random.choice(cars)), features.COLOR_SPACE) _, single_car_hog = features.hog_features_by_channel(single_car, 0, visualise=True) plotter.Plotter(True).plot_images(single_car, single_car_hog) single_not_car = image.convert_color( image.load_img(random.choice(not_cars)), features.COLOR_SPACE) _, single_not_car_hog = features.hog_features_by_channel(single_not_car, 0, visualise=True) plotter.Plotter(True).plot_images(single_not_car, single_not_car_hog)
def vehicle_detect_single_image(img_path=None): if not img_path: img_path = 'test_images/test1.jpg' init_logging() clf = classifier.Classifier() clf.from_pickle(VEHICLE_DETECTION_CLASSIFIER_PATH) detect = detector.Detector(clf) img = image.load_img(img_path) calibrator = camera_calibration.CameraCalibration(get_plotter()) calibrator.config() undisorted = calibrator.undistort(img) output = detect.identify_vehicles(undisorted) plotter.Plotter(True).plot_images(output)
#!/usr/bin/env python3 import logging as log import os from clize import run import cv2 from moviepy.editor import VideoFileClip from lane_finder import camera_calibration, plotter, lane_finder PLOT = plotter.Plotter(False) INIT = False CAMERA_CALIBRATION_PICKLE_PATH = 'camera_calibration.P' def init_logging(): log.basicConfig( format='%(asctime)s %(message)s', level=log.INFO) def get_plotter(show_plots=False): PLOT.show_plots = show_plots return PLOT def test_calibrate_camera(): init_logging() plot = get_plotter() calibrator = camera_calibration.CameraCalibration(plot) calibrator.config()