示例#1
0
 def test_eval_group1(self):
     out = deval(self.group1)
     assert(isgroup(out))
     assert(getattr(out, 'label') == 'a string')
     assert(out.opts['a'] == 1)
     assert_allclose(out.a, 1.03, rtol=1.e-2)
     assert_allclose(out.x, np.linspace(0, 10, 21), rtol=1.e-2)
示例#2
0
def spline_eval(x, group, name='spl1', _larch=None):
    """evaluate spline at specified x values

    arguments:
    ------------
      x       input 1-d array for absicca
      group   Group containing spline representation,
              as defined by spline_rep()
      name    name for spline params and subgroups ['spl1']

    returns:
    --------
      1-d array with interpolated values
    """
    sgroup = getattr(group, "{:s}_details".format(name), None)
    if sgroup is None or not isgroup(sgroup):
        raise Warning("spline_eval: subgroup '{:s}' not found".format(name))

    knots = getattr(sgroup, 'knots')
    order = getattr(sgroup, 'order')
    coefs = getattr(sgroup, 'coefs')
    for i, val in enumerate(coefs[2:-2]):
        pname = "{:s}_c{:d}".format(name, i)
        cval = getattr(group, pname, None)
        if cval is None:
            raise Warning("spline_eval: param'{:s}' not found".format(pname))
        if isParameter(cval):
            cval = cval.value
        coefs[2 + i] = cval
    setattr(sgroup, 'coefs', coefs)
    return splev(x, [knots, coefs, order])
示例#3
0
 def test_eval_group1(self):
     out = deval(self.group1)
     assert(isgroup(out))
     assert(getattr(out, 'label') == 'a string')
     assert(out.opts['a'] == 1)
     assert_allclose(out.a, 1.03, rtol=1.e-2)
     assert_allclose(out.x, np.linspace(0, 10, 21), rtol=1.e-2)
示例#4
0
def spline_eval(x, group, name='spl1', _larch=None):
    """evaluate spline at specified x values

    arguments:
    ------------
      x       input 1-d array for absicca
      group   Group containing spline representation,
              as defined by spline_rep()
      name    name for spline params and subgroups ['spl1']

    returns:
    --------
      1-d array with interpolated values
    """
    sgroup = getattr(group, "{:s}_details".format(name), None)
    if sgroup is None or not isgroup(sgroup):
        raise Warning("spline_eval: subgroup '{:s}' not found".format(name))

    knots = getattr(sgroup, 'knots')
    order = getattr(sgroup, 'order')
    coefs = getattr(sgroup, 'coefs')
    for i, val in enumerate(coefs[2:-2]):
        pname = "{:s}_c{:d}".format(name, i)
        cval = getattr(group, pname, None)
        if cval is None:
            raise Warning("spline_eval: param'{:s}' not found".format(pname))
        if isParameter(cval):
            cval = cval.value
        coefs[2+i] = cval
    setattr(sgroup, 'coefs', coefs)
    return splev(x, [knots, coefs, order])
示例#5
0
 def test_eval_group2(self):
     out = deval(self.group2)
     assert(isgroup(out))
     assert(out.sub.label == 'a label')
     assert(isParameter(out.par1))
     assert(isParameter(out.par2))
     assert(out.par1.name == 'p1')
     assert(out.par2.name == 'p2')
     assert(out.par1.vary == False)
     assert(out.par2.vary == True)
     assert(out.par1.value == 3.0)
     assert(out.par2.value == 1.0)
     assert(out.par1.min   == 0.0)
示例#6
0
 def test_eval_group2(self):
     out = deval(self.group2)
     assert(isgroup(out))
     assert(out.sub.label == 'a label')
     assert(isParameter(out.par1))
     assert(isParameter(out.par2))
     assert(out.par1.name == 'p1')
     assert(out.par2.name == 'p2')
     assert(out.par1.vary == False)
     assert(out.par2.vary == True)
     assert(out.par1.value == 3.0)
     assert(out.par2.value == 1.0)
     assert(out.par1.min   == 0.0)
示例#7
0
def encode4js(obj):
    """return an object ready for json encoding.
    has special handling for many Python types
      numpy array
      complex numbers
      Larch Groups
      Larch Parameters
    """
    if isinstance(obj, np.ndarray):
        out = {'__class__': 'Array', '__shape__': obj.shape,
               '__dtype__': obj.dtype.name}
        out['value'] = obj.flatten().tolist()
        if 'complex' in obj.dtype.name:
            out['value'] = [(obj.real).tolist(), (obj.imag).tolist()]
        return out
    elif isinstance(obj, (np.float, np.int)):
        return float(obj)
    elif isinstance(obj, six.string_types):
        return str(obj)
    elif isinstance(obj, np.complex):
        return {'__class__': 'Complex', 'value': (obj.real, obj.imag)}
    elif isgroup(obj):
        out = {'__class__': 'Group'}
        for item in dir(obj):
            out[item] = encode4js(getattr(obj, item))
        return out
    elif isParameter(obj):
        out = {'__class__': 'Parameter'}
        for attr in ('value', 'name', 'vary', 'min', 'max',
                     'expr', 'stderr', 'correl'):
            val = getattr(obj, attr, None)
            if val is not None:
                out[attr] = val
        return out
    elif isinstance(obj, (tuple, list)):
        ctype = 'List'
        if isinstance(obj, tuple):
            ctype = 'Tuple'
        val = [encode4js(item) for item in obj]
        return {'__class__': ctype, 'value': val}
    elif isinstance(obj, dict):
        out = {'__class__': 'Dict'}
        for key, val in obj.items():
            out[encode4js(key)] = encode4js(val)
        return out
    return obj
示例#8
0
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=True, err_sigma=1, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [True]
      err_sigma: sigma level for uncertainties in mu_0(E) and chi(k) [1]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(4, min(128, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q  = kmin + i*(kmax-kmin)/(nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Parameters()
    for i in range(len(coefs)):
        params.add(name = FMT_COEF % i, value=coefs[i], vary=i<len(spl_y))

    initbkg, initchi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                                   knots, coefs, order, kout)

    # do fit
    result = minimize(__resid, params, method='leastsq',
                      gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                      kws = dict(ncoefs=len(coefs), chi_std=chi_std,
                                 knots=knots, order=order,
                                 kraw=kraw[:iemax-ie0+1],
                                 mu=mu[ie0:iemax+1], irbkg=irbkg, kout=kout,
                                 ftwin=ftwin, kweight=kweight,
                                 nfft=nfft, nclamp=nclamp,
                                 clamp_lo=clamp_lo, clamp_hi=clamp_hi))

    # write final results
    coefs = [result.params[FMT_COEF % i].value for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                           knots, coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0+len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg  = obkg
    group.chie = (mu-obkg)/edge_step
    group.k    = kout
    group.chi  = chi/edge_step

    # now fill in 'autobk_details' group
    details = Group(params=result.params)

    details.init_bkg = np.copy(mu)
    details.init_bkg[ie0:ie0+len(bkg)] = initbkg
    details.init_chi = initchi/edge_step
    details.knots_e  = spl_e
    details.knots_y  = np.array([coefs[i] for i in range(nspl)])
    details.init_knots_y = spl_y
    details.nfev = result.nfev
    details.kmin = kmin
    details.kmax = kmax
    group.autobk_details = details

    # uncertainties in mu0 and chi: can be fairly slow.
    if calc_uncertainties:
        nchi = len(chi)
        nmue = iemax-ie0 + 1
        redchi = result.redchi
        covar  = result.covar / redchi
        jac_chi = np.zeros(nchi*nspl).reshape((nspl, nchi))
        jac_bkg = np.zeros(nmue*nspl).reshape((nspl, nmue))

        cvals, cerrs = [], []
        for i in range(len(coefs)):
             par = result.params[FMT_COEF % i]
             cvals.append(getattr(par, 'value', 0.0))
             cdel = getattr(par, 'stderr', 0.0)
             if cdel is None:
                 cdel = 0.0
             cerrs.append(cdel/2.0)
        cvals = np.array(cvals)
        cerrs = np.array(cerrs)

        # find derivatives by hand!
        _k = kraw[:nmue]
        _m = mu[ie0:iemax+1]
        for i in range(nspl):
            cval0 = cvals[i]
            cvals[i] = cval0 + cerrs[i]
            bkg1, chi1 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0 - cerrs[i]
            bkg2, chi2 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0
            jac_chi[i] = (chi1 - chi2) / (2*cerrs[i])
            jac_bkg[i] = (bkg1 - bkg2) / (2*cerrs[i])

        dfchi = np.zeros(nchi)
        dfbkg = np.zeros(nmue)
        for i in range(nspl):
            for j in range(nspl):
                dfchi += jac_chi[i]*jac_chi[j]*covar[i,j]
                dfbkg += jac_bkg[i]*jac_bkg[j]*covar[i,j]

        prob = 0.5*(1.0 + erf(err_sigma/np.sqrt(2.0)))
        dchi = t.ppf(prob, nchi-nspl) * np.sqrt(dfchi*redchi)
        dbkg = t.ppf(prob, nmue-nspl) * np.sqrt(dfbkg*redchi)

        group.delta_chi = dchi
        group.delta_bkg = 0.0*mu
        group.delta_bkg[ie0:ie0+len(dbkg)] = dbkg
示例#9
0
def isLarchMCAGroup(grp):
    """tests whether variable holds a valid Larch MCAGroup"""
    return isgroup(grp, 'energy', 'counts', 'rois')
示例#10
0
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=False, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [False]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return

    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(4, min(128, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q  = kmin + i*(kmax-kmin)/(nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Group()
    for i in range(len(coefs)):
        name = FMT_COEF % i
        p = Parameter(coefs[i], name=name, vary=i<len(spl_y))
        p._getval()
        setattr(params, name, p)

    initbkg, initchi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                                   knots, coefs, order, kout)

    # do fit
    fit = Minimizer(__resid, params, _larch=_larch, toler=1.e-4,
                    fcn_kws = dict(ncoefs=len(coefs), chi_std=chi_std,
                                   knots=knots, order=order,
                                   kraw=kraw[:iemax-ie0+1],
                                   mu=mu[ie0:iemax+1], irbkg=irbkg, kout=kout,
                                   ftwin=ftwin, kweight=kweight,
                                   nfft=nfft, nclamp=nclamp,
                                   clamp_lo=clamp_lo, clamp_hi=clamp_hi))
    fit.leastsq()

    # write final results
    coefs = [getattr(params, FMT_COEF % i) for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                           knots, coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0+len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg  = obkg
    group.chie = (mu-obkg)/edge_step
    group.k    = kout
    group.chi  = chi/edge_step

    # now fill in 'autobk_details' group
    params.init_bkg = np.copy(mu)
    params.init_bkg[ie0:ie0+len(bkg)] = initbkg
    params.init_chi = initchi/edge_step
    params.knots_e  = spl_e
    params.knots_y  = np.array([coefs[i] for i in range(nspl)])
    params.init_knots_y = spl_y
    params.nfev = params.fit_details.nfev
    params.kmin = kmin
    params.kmax = kmax  
    group.autobk_details = params

    # uncertainties in mu0 and chi:  fairly slow!!
    if HAS_UNCERTAIN and calc_uncertainties:
        vbest, vstd = [], []
        for n in fit.var_names:
            par = getattr(params, n)
            vbest.append(par.value)
            vstd.append(par.stderr)
        uvars = uncertainties.correlated_values(vbest, params.covar)
        # uncertainty in bkg (aka mu0)
        # note that much of this is working around
        # limitations in the uncertainty package that make it
        #  1. take an argument list (not array)
        #  2. work on returned scalars (but not arrays)
        #  3. not handle kw args and *args well (so use
        #     of global "index" is important here)
        nkx = iemax-ie0 + 1
        def my_dsplev(*args):
            coefs = np.array(args)
            return splev(kraw[:nkx], [knots, coefs, order])[index]
        fdbkg = uncertainties.wrap(my_dsplev)
        dmu0  = [fdbkg(*uvars).std_dev() for index in range(len(bkg))]
        group.delta_bkg = np.zeros(len(mu))
        group.delta_bkg[ie0:ie0+len(bkg)] = np.array(dmu0)

        # uncertainty in chi (see notes above)
        def my_dchi(*args):
            coefs = np.array(args)
            b,chi = spline_eval(kraw[:nkx], mu[ie0:iemax+1],
                                knots, coefs, order, kout)
            return chi[index]
        fdchi = uncertainties.wrap(my_dchi)
        dchi  = [fdchi(*uvars).std_dev() for index in range(len(kout))]
        group.delta_chi = np.array(dchi)/edge_step
示例#11
0
def isLarchMCAGroup(grp):
    """tests whether variable holds a valid Larch MCAGroup"""
    return isgroup(grp, 'energy',  'counts', 'rois')
示例#12
0
def parse_group_args(arg0, members=None, group=None, defaults=None,
                     fcn_name=None, check_outputs=True):
    """parse arguments for functions supporting First Argument Group convention

    That is, if the first argument is a Larch Group and contains members
    named in 'members', this will return data extracted from that group.

    Arguments
    ----------
    arg0:         first argument for function call.
    members:      list/tuple of names of required members (in order)
    defaults:     tuple of default values for remaining required
                  arguments past the first (in order)
    group:        group sent to parent function, used for outputs
    fcn_name:     name of parent function, used for error messages
    check_output: True/False (default True) setting whether a Warning should
                  be raised in any of the outputs (except for the final group)
                  are None.  This effectively checks that all expected inputs
                  have been specified
    Returns
    -------
     tuple of output values in the order listed by members, followed by the
     output group (which could be None).

    Notes
    -----
    This implements the First Argument Group convention, used for many Larch functions.
    As an example, the function _xafs.find_e0 is defined like this:
       find_e0(energy, mu=None, group=None, ...)

    and uses this function as
       energy, mu, group = parse_group_arg(energy, members=('energy', 'mu'),
                                           defaults=(mu,), group=group,
                                           fcn_name='find_e0', check_output=True)

    This allows the caller to use
         find_e0(grp)
    as a shorthand for
         find_e0(grp.energy, grp.mu, group=grp)

    as long as the Group grp has member 'energy', and 'mu'.

    With 'check_output=True', the value for 'mu' is not actually allowed to be None.

    The defaults tuple should be passed so that correct values are assigned
    if the caller actually specifies arrays as for the full call signature.
    """
    if members is None:
        members = []
    if isgroup(arg0, *members):
        if group is None:
            group = arg0
        out = [getattr(arg0, attr) for attr in members]
    else:
        out = [arg0] + list(defaults)

    # test that all outputs are non-None
    if check_outputs:
        _errmsg = """%s: needs First Argument Group or valid arguments for
  %s"""
        if fcn_name is None: fcn_name ='unknown function'
        for i, nam in enumerate(members):
            if out[i] is None:
                raise Warning(_errmsg % (fcn_name, ', '.join(members)))

    out.append(group)
    return out
示例#13
0
 def test_eval_group3(self):
     out = deval(self.group3)
     assert(isgroup(out))
     assert(out.dx['a']     == 1.3 + 0.2j)
     assert(out.dx['tup']   == (0, None))
     assert(out.dx['blist'] == [1,2,3.0])
示例#14
0
def autobk(energy,
           mu=None,
           group=None,
           rbkg=1,
           nknots=None,
           e0=None,
           edge_step=None,
           kmin=0,
           kmax=None,
           kweight=1,
           dk=0,
           win='hanning',
           k_std=None,
           chi_std=None,
           nfft=2048,
           kstep=0.05,
           pre_edge_kws=None,
           nclamp=4,
           clamp_lo=1,
           clamp_hi=1,
           calc_uncertainties=False,
           _larch=None,
           **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [False]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'mu'),
                                         defaults=(mu, ),
                                         group=group,
                                         fcn_name='autobk')

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3,
                       nvict=0,
                       pre1=None,
                       pre2=-50.,
                       norm1=100.,
                       norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n'
            )
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi / (kstep * nfft)
    if rbkg < 2 * rgrid: rbkg = 2 * rgrid
    irbkg = int(1.01 + rbkg / rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe) * np.sqrt(ETOK * abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout = kstep * np.arange(int(1.01 + kmax / kstep), dtype='float64')
    iemax = min(len(energy), 2 + index_of(energy, e0 + kmax * kmax / ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(
        kout, xmin=kmin, xmax=kmax, window=win, dx=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(4, min(128, 2 * int(rbkg * (kmax - kmin) / np.pi) + 1))
    spl_y, spl_k, spl_e = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q = kmin + i * (kmax - kmin) / (nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw) - 1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik + ie0]
        spl_y[i] = (2 * mu[ik + ie0] + mu[i1 + ie0] + mu[i2 + ie0]) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Group()
    for i in range(len(coefs)):
        name = FMT_COEF % i
        p = Parameter(coefs[i], name=name, vary=i < len(spl_y))
        p._getval()
        setattr(params, name, p)

    initbkg, initchi = spline_eval(kraw[:iemax - ie0 + 1], mu[ie0:iemax + 1],
                                   knots, coefs, order, kout)

    # do fit
    fit = Minimizer(__resid,
                    params,
                    _larch=_larch,
                    toler=1.e-4,
                    fcn_kws=dict(ncoefs=len(coefs),
                                 chi_std=chi_std,
                                 knots=knots,
                                 order=order,
                                 kraw=kraw[:iemax - ie0 + 1],
                                 mu=mu[ie0:iemax + 1],
                                 irbkg=irbkg,
                                 kout=kout,
                                 ftwin=ftwin,
                                 kweight=kweight,
                                 nfft=nfft,
                                 nclamp=nclamp,
                                 clamp_lo=clamp_lo,
                                 clamp_hi=clamp_hi))
    fit.leastsq()

    # write final results
    coefs = [getattr(params, FMT_COEF % i) for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax - ie0 + 1], mu[ie0:iemax + 1], knots,
                           coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0 + len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg = obkg
    group.chie = (mu - obkg) / edge_step
    group.k = kout
    group.chi = chi / edge_step

    # now fill in 'autobk_details' group
    params.init_bkg = np.copy(mu)
    params.init_bkg[ie0:ie0 + len(bkg)] = initbkg
    params.init_chi = initchi / edge_step
    params.knots_e = spl_e
    params.knots_y = np.array([coefs[i] for i in range(nspl)])
    params.init_knots_y = spl_y
    params.nfev = params.fit_details.nfev
    params.kmin = kmin
    params.kmax = kmax
    group.autobk_details = params

    # uncertainties in mu0 and chi:  fairly slow!!
    if HAS_UNCERTAIN and calc_uncertainties:
        vbest, vstd = [], []
        for n in fit.var_names:
            par = getattr(params, n)
            vbest.append(par.value)
            vstd.append(par.stderr)
        uvars = uncertainties.correlated_values(vbest, params.covar)
        # uncertainty in bkg (aka mu0)
        # note that much of this is working around
        # limitations in the uncertainty package that make it
        #  1. take an argument list (not array)
        #  2. work on returned scalars (but not arrays)
        #  3. not handle kw args and *args well (so use
        #     of global "index" is important here)
        nkx = iemax - ie0 + 1

        def my_dsplev(*args):
            coefs = np.array(args)
            return splev(kraw[:nkx], [knots, coefs, order])[index]

        fdbkg = uncertainties.wrap(my_dsplev)
        dmu0 = [fdbkg(*uvars).std_dev() for index in range(len(bkg))]
        group.delta_bkg = np.zeros(len(mu))
        group.delta_bkg[ie0:ie0 + len(bkg)] = np.array(dmu0)

        # uncertainty in chi (see notes above)
        def my_dchi(*args):
            coefs = np.array(args)
            b, chi = spline_eval(kraw[:nkx], mu[ie0:iemax + 1], knots, coefs,
                                 order, kout)
            return chi[index]

        fdchi = uncertainties.wrap(my_dchi)
        dchi = [fdchi(*uvars).std_dev() for index in range(len(kout))]
        group.delta_chi = np.array(dchi) / edge_step
示例#15
0
 def test_eval_group3(self):
     out = deval(self.group3)
     assert(isgroup(out))
     assert(out.dx['a']     == 1.3 + 0.2j)
     assert(out.dx['tup']   == (0, None))
     assert(out.dx['blist'] == [1,2,3.0])
示例#16
0
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0.1,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=True, err_sigma=1, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0.1]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [True]
      err_sigma: sigma level for uncertainties in mu_0(E) and chi(k) [1]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = sys.stdout
    if _larch is not None:
        msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk, dx2=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(5, min(64, int(2*rbkg*(kmax-kmin)/np.pi) + 2))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q  = kmin + i*(kmax-kmin)/(nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Parameters()
    for i in range(len(coefs)):
        params.add(name = FMT_COEF % i, value=coefs[i], vary=i<len(spl_y))

    initbkg, initchi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                                   knots, coefs, order, kout)

    # do fit
    result = minimize(__resid, params, method='leastsq',
                      gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                      kws = dict(ncoefs=len(coefs), chi_std=chi_std,
                                 knots=knots, order=order,
                                 kraw=kraw[:iemax-ie0+1],
                                 mu=mu[ie0:iemax+1], irbkg=irbkg, kout=kout,
                                 ftwin=ftwin, kweight=kweight,
                                 nfft=nfft, nclamp=nclamp,
                                 clamp_lo=clamp_lo, clamp_hi=clamp_hi))

    # write final results
    coefs = [result.params[FMT_COEF % i].value for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                           knots, coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0+len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg  = obkg
    group.chie = (mu-obkg)/edge_step
    group.k    = kout
    group.chi  = chi/edge_step
    group.e0   = e0

    # now fill in 'autobk_details' group
    details = Group(params=result.params)

    details.init_bkg = np.copy(mu)
    details.init_bkg[ie0:ie0+len(bkg)] = initbkg
    details.init_chi = initchi/edge_step
    details.knots_e  = spl_e
    details.knots_y  = np.array([coefs[i] for i in range(nspl)])
    details.init_knots_y = spl_y
    details.nfev = result.nfev
    details.kmin = kmin
    details.kmax = kmax
    group.autobk_details = details

    # uncertainties in mu0 and chi: can be fairly slow.
    if calc_uncertainties:
        nchi = len(chi)
        nmue = iemax-ie0 + 1
        redchi = result.redchi
        covar  = result.covar / redchi
        jac_chi = np.zeros(nchi*nspl).reshape((nspl, nchi))
        jac_bkg = np.zeros(nmue*nspl).reshape((nspl, nmue))

        cvals, cerrs = [], []
        for i in range(len(coefs)):
             par = result.params[FMT_COEF % i]
             cvals.append(getattr(par, 'value', 0.0))
             cdel = getattr(par, 'stderr', 0.0)
             if cdel is None:
                 cdel = 0.0
             cerrs.append(cdel/2.0)
        cvals = np.array(cvals)
        cerrs = np.array(cerrs)

        # find derivatives by hand!
        _k = kraw[:nmue]
        _m = mu[ie0:iemax+1]
        for i in range(nspl):
            cval0 = cvals[i]
            cvals[i] = cval0 + cerrs[i]
            bkg1, chi1 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0 - cerrs[i]
            bkg2, chi2 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0
            jac_chi[i] = (chi1 - chi2) / (2*cerrs[i])
            jac_bkg[i] = (bkg1 - bkg2) / (2*cerrs[i])

        dfchi = np.zeros(nchi)
        dfbkg = np.zeros(nmue)
        for i in range(nspl):
            for j in range(nspl):
                dfchi += jac_chi[i]*jac_chi[j]*covar[i,j]
                dfbkg += jac_bkg[i]*jac_bkg[j]*covar[i,j]

        prob = 0.5*(1.0 + erf(err_sigma/np.sqrt(2.0)))
        dchi = t.ppf(prob, nchi-nspl) * np.sqrt(dfchi*redchi)
        dbkg = t.ppf(prob, nmue-nspl) * np.sqrt(dfbkg*redchi)

        group.delta_chi = dchi
        group.delta_bkg = 0.0*mu
        group.delta_bkg[ie0:ie0+len(dbkg)] = dbkg