示例#1
0
    def _extract_phenotype(data_phenotype, nuclei, wildcards, features):
        from lasagna.pipelines._20170914_endo import feature_table_stack
        from lasagna.process import feature_table, default_object_features

        df = feature_table_stack(data_phenotype, nuclei, features)

        features = default_object_features.copy()
        features['cell'] = features.pop('label')
        df2 = feature_table(nuclei, nuclei, features)
        df = df.join(df2.set_index('cell'), on='cell')

        for k, v in wildcards.items():
            df[k] = v

        return df
示例#2
0
def get_features(data, peaks):
    """ Uses peaks from DO only
    """
    DO_masks = peaks_to_DO_masks(peaks)

    arr = []
    # loop over peak sources
    for source, mask in DO_masks.items():
        # peak object features
        objects = feature_table(mask, mask, object_features)
        # DO/sequencing features
        table = build_feature_table(data, mask, peak_features, all_index)
        table = objects.join(table)
        table['source'] = source
        arr += [table]
    return pd.concat(arr)
示例#3
0
def test_feature_table():
    features = {
        'area':
        lambda region: region.area,
        'bounds':
        lambda region: region.bbox,
        'label':
        lambda region: np.median(region.intensity_image[region.intensity_image
                                                        > 0]),
    }

    data = read_stack(stack)
    mask = read_stack(nuclei)

    df = feature_table(data[0][0], mask, features)

    df_ = pd.read_pickle(home('feature_table.pkl'))
    assert (df == df_).all().all()
示例#4
0
def get_nuclear_features(dapi, nuclei):
    features = dict(object_features)
    features.update(peak_features)
    return feature_table(dapi, nuclei, features)