示例#1
0
 def test_normalize_tiny_unequal_point_cloud(self):
     point_cloud = create_point_cloud([0, 0, 0], [0, 0, 0], [1, 2, 3])
     normalized_point_cloud = normalize(point_cloud)
     normalized_values = get_attribute_value(normalized_point_cloud,
                                             range(3), normalized_height)
     np.testing.assert_allclose(normalized_values,
                                np.array([0, 1, 2]),
                                atol=1e-7)
示例#2
0
 def test_normalize_tiny_unequal_point_cloud_multiple_cells(self):
     """Last of the 3 points is not in the neighborhood of the others."""
     point_cloud = create_point_cloud([0, 0, 5], [0, 0, 0], [1, 2, 3])
     normalized_point_cloud = normalize(point_cloud, cell_size=2)
     normalized_values = get_attribute_value(normalized_point_cloud,
                                             range(3), normalized_height)
     np.testing.assert_allclose(normalized_values,
                                np.array([0, 1, 0]),
                                atol=1e-7)
示例#3
0
 def test_normalize_provenance_data_present(self):
     """Last of the 3 points is not in the neighborhood of the others."""
     point_cloud = create_point_cloud([0, 0, 5], [0, 0, 0], [1, 2, 3])
     point_cloud.pop(keys.provenance, None)  # Remove any provenance data
     normalized_point_cloud = normalize(point_cloud, cell_size=2)
     self.assertTrue(keys.provenance in normalized_point_cloud)
示例#4
0
 def test_normalize_empty_point_cloud(self):
     point_cloud = create_point_cloud([], [], [])
     normalized_point_cloud = normalize(point_cloud)
     self.assertTrue(normalized_height in normalized_point_cloud[point])