def bandpass_timefreq(s, frequencies, sample_rate): """ Bandpass filter signal s at the given frequency bands, and then use the Hilber transform to produce a complex-valued time-frequency representation of the bandpass filtered signal. """ freqs = sorted(frequencies) tf_raw = np.zeros([len(frequencies), len(s)], dtype='float') tf_freqs = list() for k,f in enumerate(freqs): #bandpass filter signal if k == 0: tf_raw[k, :] = lowpass_filter(s, sample_rate, f) tf_freqs.append( (0.0, f) ) else: tf_raw[k, :] = bandpass_filter(s, sample_rate, freqs[k-1], f) tf_freqs.append( (freqs[k-1], f) ) #compute analytic signal tf = hilbert(tf_raw, axis=1) #print 'tf_raw.shape=',tf_raw.shape #print 'tf.shape=',tf.shape return np.array(tf_freqs),tf_raw,tf
def bandpass_timefreq(s, frequencies, sample_rate): """ Bandpass filter signal s at the given frequency bands, and then use the Hilber transform to produce a complex-valued time-frequency representation of the bandpass filtered signal. """ freqs = sorted(frequencies) tf_raw = np.zeros([len(frequencies), len(s)], dtype='float') tf_freqs = list() for k, f in enumerate(freqs): #bandpass filter signal if k == 0: tf_raw[k, :] = lowpass_filter(s, sample_rate, f) tf_freqs.append((0.0, f)) else: tf_raw[k, :] = bandpass_filter(s, sample_rate, freqs[k - 1], f) tf_freqs.append((freqs[k - 1], f)) #compute analytic signal tf = hilbert(tf_raw, axis=1) #print 'tf_raw.shape=',tf_raw.shape #print 'tf.shape=',tf.shape return np.array(tf_freqs), tf_raw, tf
def test_cross_psd(self): np.random.seed(1234567) sr = 1000.0 dur = 1.0 nt = int(dur * sr) t = np.arange(nt) / sr # create a simple signal freqs = list() freqs.extend(np.arange(8, 12)) freqs.extend(np.arange(60, 71)) freqs.extend(np.arange(130, 151)) s1 = np.zeros([nt]) for f in freqs: s1 += np.sin(2 * np.pi * f * t) s1 /= s1.max() # create a noise corrupted, bandpassed filtered version of s1 noise = np.random.randn(nt) * 1e-1 # s2 = convolve1d(s1, filt, mode='mirror') + noise s2 = bandpass_filter(s1, sample_rate=sr, low_freq=40., high_freq=90.) s2 /= s2.max() s2 += noise # compute the signal's power spectrums welch_freq1, welch_psd1 = welch(s1, fs=sr) welch_freq2, welch_psd2 = welch(s2, fs=sr) welch_psd_max = max(welch_psd1.max(), welch_psd2.max()) welch_psd1 /= welch_psd_max welch_psd2 /= welch_psd_max # compute the auto-correlation functions lags = np.arange(-200, 201) acf1 = correlation_function(s1, s1, lags, normalize=True) acf2 = correlation_function(s2, s2, lags, normalize=True) # compute the cross correlation functions cf12 = correlation_function(s1, s2, lags, normalize=True) coh12 = coherency(s1, s2, lags, window_fraction=0.75, noise_floor_db=100.) # do an FFT shift to the lags and the window, otherwise the FFT of the ACFs is not equal to the power # spectrum for some numerical reason shift_lags = fftshift(lags) if len(lags) % 2 == 1: # shift zero from end of shift_lags to beginning shift_lags = np.roll(shift_lags, 1) acf1_shift = correlation_function(s1, s1, shift_lags) acf2_shift = correlation_function(s2, s2, shift_lags) # compute the power spectra from the auto-spectra ps1 = fft(acf1_shift) ps1_freq = fftfreq(len(acf1), d=1.0 / sr) fi = ps1_freq > 0 ps1 = ps1[fi] assert np.sum( np.abs(ps1.imag) > 1e-8 ) == 0, "Nonzero imaginary part for fft(acf1) (%d)" % np.sum( np.abs(ps1.imag) > 1e-8) ps1_auto = np.abs(ps1.real) ps1_auto_freq = ps1_freq[fi] ps2 = fft(acf2_shift) ps2_freq = fftfreq(len(acf2), d=1.0 / sr) fi = ps2_freq > 0 ps2 = ps2[fi] assert np.sum(np.abs(ps2.imag) > 1e-8 ) == 0, "Nonzero imaginary part for fft(acf2)" ps2_auto = np.abs(ps2.real) ps2_auto_freq = ps2_freq[fi] assert np.sum(ps1_auto < 0) == 0, "negatives in ps1_auto" assert np.sum(ps2_auto < 0) == 0, "negatives in ps2_auto" # compute the cross spectral density from the correlation function cf12_shift = correlation_function(s1, s2, shift_lags, normalize=True) psd12 = fft(cf12_shift) psd12_freq = fftfreq(len(cf12_shift), d=1.0 / sr) fi = psd12_freq > 0 psd12 = np.abs(psd12[fi]) psd12_freq = psd12_freq[fi] # compute the cross spectral density from the power spectra psd12_welch = welch_psd1 * welch_psd2 psd12_welch /= psd12_welch.max() # compute the coherence from the cross spectral density cfreq,coherence,coherence_var,phase_coherence,phase_coherence_var,coh12_freqspace,coh12_freqspace_t = \ coherence_jn(s1, s2, sample_rate=sr, window_length=0.100, increment=0.050, return_coherency=True) coh12_freqspace /= np.abs(coh12_freqspace).max() # weight the coherence by one minus the normalized standard deviation coherence_std = np.sqrt(coherence_var) # cweight = coherence_std / coherence_std.sum() # coherence_weighted = (1.0 - cweight)*coherence coherence_weighted = coherence - coherence_std coherence_weighted[coherence_weighted < 0] = 0 # compute the coherence from the fft of the coherency coherence2 = fft(fftshift(coh12)) coherence2_freq = fftfreq(len(coherence2), d=1.0 / sr) fi = coherence2_freq > 0 coherence2 = np.abs(coherence2[fi]) coherence2_freq = coherence2_freq[fi] """ plt.figure() ax = plt.subplot(2, 1, 1) plt.plot(ps1_auto_freq, ps1_auto*ps2_auto, 'c-', linewidth=2.0, alpha=0.75) plt.plot(psd12_freq, psd12, 'g-', linewidth=2.0, alpha=0.9) plt.plot(ps1_auto_freq, ps1_auto, 'k-', linewidth=2.0, alpha=0.75) plt.plot(ps2_auto_freq, ps2_auto, 'r-', linewidth=2.0, alpha=0.75) plt.axis('tight') plt.legend(['denom', '12', '1', '2']) ax = plt.subplot(2, 1, 2) plt.plot(psd12_freq, coherence, 'b-') plt.axis('tight') plt.show() """ # normalize the cross-spectral density and power spectra psd12 /= psd12.max() ps_auto_max = max(ps1_auto.max(), ps2_auto.max()) ps1_auto /= ps_auto_max ps2_auto /= ps_auto_max # make some plots plt.figure() nrows = 2 ncols = 2 # plot the signals ax = plt.subplot(nrows, ncols, 1) plt.plot(t, s1, 'k-', linewidth=2.0) plt.plot(t, s2, 'r-', alpha=0.75, linewidth=2.0) plt.xlabel('Time (s)') plt.ylabel('Signal') plt.axis('tight') # plot the spectra ax = plt.subplot(nrows, ncols, 2) plt.plot(welch_freq1, welch_psd1, 'k-', linewidth=2.0, alpha=0.85) plt.plot(ps1_auto_freq, ps1_auto, 'k--', linewidth=2.0, alpha=0.85) plt.plot(welch_freq2, welch_psd2, 'r-', alpha=0.75, linewidth=2.0) plt.plot(ps2_auto_freq, ps2_auto, 'r--', linewidth=2.0, alpha=0.75) plt.axis('tight') plt.xlabel('Frequency (Hz)') plt.ylabel('Power') # plot the correlation functions ax = plt.subplot(nrows, ncols, 3) plt.axhline(0, c='k') plt.plot(lags, acf1, 'k-', linewidth=2.0) plt.plot(lags, acf2, 'r-', alpha=0.75, linewidth=2.0) plt.plot(lags, cf12, 'g-', alpha=0.75, linewidth=2.0) plt.plot(lags, coh12, 'b-', linewidth=2.0, alpha=0.75) plt.plot(coh12_freqspace_t * 1e3, coh12_freqspace, 'm-', linewidth=1.0, alpha=0.95) plt.xlabel('Lag (ms)') plt.ylabel('Correlation Function') plt.axis('tight') plt.ylim(-0.5, 1.0) handles = custom_legend(['k', 'r', 'g', 'b', 'c'], ['acf1', 'acf2', 'cf12', 'coh12', 'coh12_f']) plt.legend(handles=handles) # plot the cross spectral density ax = plt.subplot(nrows, ncols, 4) handles = custom_legend(['g', 'k', 'b'], ['CSD', 'Coherence', 'Weighted']) plt.axhline(0, c='k') plt.axhline(1, c='k') plt.plot(psd12_freq, psd12, 'g-', linewidth=3.0) plt.errorbar(cfreq, coherence, yerr=np.sqrt(coherence_var), fmt='k-', ecolor='r', linewidth=3.0, elinewidth=5.0, alpha=0.8) plt.plot(cfreq, coherence_weighted, 'b-', linewidth=3.0, alpha=0.75) plt.xlabel('Frequency (Hz)') plt.ylabel('Cross-spectral Density/Coherence') plt.legend(handles=handles) """ plt.figure() plt.axhline(0, c='k') plt.plot(lags, cf12, 'k-', alpha=1, linewidth=2.0) plt.plot(lags, coh12, 'b-', linewidth=3.0, alpha=0.75) plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'r-', linewidth=2.0, alpha=0.95) plt.xlabel('Lag (ms)') plt.ylabel('Correlation Function') plt.axis('tight') plt.ylim(-0.5, 1.0) handles = custom_legend(['k', 'b', 'r'], ['cf12', 'coh12', 'coh12_f']) plt.legend(handles=handles) """ plt.show()
def test_cross_psd(self): np.random.seed(1234567) sr = 1000.0 dur = 1.0 nt = int(dur*sr) t = np.arange(nt) / sr # create a simple signal freqs = list() freqs.extend(np.arange(8, 12)) freqs.extend(np.arange(60, 71)) freqs.extend(np.arange(130, 151)) s1 = np.zeros([nt]) for f in freqs: s1 += np.sin(2*np.pi*f*t) s1 /= s1.max() # create a noise corrupted, bandpassed filtered version of s1 noise = np.random.randn(nt)*1e-1 # s2 = convolve1d(s1, filt, mode='mirror') + noise s2 = bandpass_filter(s1, sample_rate=sr, low_freq=40., high_freq=90.) s2 /= s2.max() s2 += noise # compute the signal's power spectrums welch_freq1,welch_psd1 = welch(s1, fs=sr) welch_freq2,welch_psd2 = welch(s2, fs=sr) welch_psd_max = max(welch_psd1.max(), welch_psd2.max()) welch_psd1 /= welch_psd_max welch_psd2 /= welch_psd_max # compute the auto-correlation functions lags = np.arange(-200, 201) acf1 = correlation_function(s1, s1, lags, normalize=True) acf2 = correlation_function(s2, s2, lags, normalize=True) # compute the cross correlation functions cf12 = correlation_function(s1, s2, lags, normalize=True) coh12 = coherency(s1, s2, lags, window_fraction=0.75, noise_floor_db=100.) # do an FFT shift to the lags and the window, otherwise the FFT of the ACFs is not equal to the power # spectrum for some numerical reason shift_lags = fftshift(lags) if len(lags) % 2 == 1: # shift zero from end of shift_lags to beginning shift_lags = np.roll(shift_lags, 1) acf1_shift = correlation_function(s1, s1, shift_lags) acf2_shift = correlation_function(s2, s2, shift_lags) # compute the power spectra from the auto-spectra ps1 = fft(acf1_shift) ps1_freq = fftfreq(len(acf1), d=1.0/sr) fi = ps1_freq > 0 ps1 = ps1[fi] assert np.sum(np.abs(ps1.imag) > 1e-8) == 0, "Nonzero imaginary part for fft(acf1) (%d)" % np.sum(np.abs(ps1.imag) > 1e-8) ps1_auto = np.abs(ps1.real) ps1_auto_freq = ps1_freq[fi] ps2 = fft(acf2_shift) ps2_freq = fftfreq(len(acf2), d=1.0/sr) fi = ps2_freq > 0 ps2 = ps2[fi] assert np.sum(np.abs(ps2.imag) > 1e-8) == 0, "Nonzero imaginary part for fft(acf2)" ps2_auto = np.abs(ps2.real) ps2_auto_freq = ps2_freq[fi] assert np.sum(ps1_auto < 0) == 0, "negatives in ps1_auto" assert np.sum(ps2_auto < 0) == 0, "negatives in ps2_auto" # compute the cross spectral density from the correlation function cf12_shift = correlation_function(s1, s2, shift_lags, normalize=True) psd12 = fft(cf12_shift) psd12_freq = fftfreq(len(cf12_shift), d=1.0/sr) fi = psd12_freq > 0 psd12 = np.abs(psd12[fi]) psd12_freq = psd12_freq[fi] # compute the cross spectral density from the power spectra psd12_welch = welch_psd1*welch_psd2 psd12_welch /= psd12_welch.max() # compute the coherence from the cross spectral density cfreq,coherence,coherence_var,phase_coherence,phase_coherence_var,coh12_freqspace,coh12_freqspace_t = \ coherence_jn(s1, s2, sample_rate=sr, window_length=0.100, increment=0.050, return_coherency=True) coh12_freqspace /= np.abs(coh12_freqspace).max() # weight the coherence by one minus the normalized standard deviation coherence_std = np.sqrt(coherence_var) # cweight = coherence_std / coherence_std.sum() # coherence_weighted = (1.0 - cweight)*coherence coherence_weighted = coherence - coherence_std coherence_weighted[coherence_weighted < 0] = 0 # compute the coherence from the fft of the coherency coherence2 = fft(fftshift(coh12)) coherence2_freq = fftfreq(len(coherence2), d=1.0/sr) fi = coherence2_freq > 0 coherence2 = np.abs(coherence2[fi]) coherence2_freq = coherence2_freq[fi] """ plt.figure() ax = plt.subplot(2, 1, 1) plt.plot(ps1_auto_freq, ps1_auto*ps2_auto, 'c-', linewidth=2.0, alpha=0.75) plt.plot(psd12_freq, psd12, 'g-', linewidth=2.0, alpha=0.9) plt.plot(ps1_auto_freq, ps1_auto, 'k-', linewidth=2.0, alpha=0.75) plt.plot(ps2_auto_freq, ps2_auto, 'r-', linewidth=2.0, alpha=0.75) plt.axis('tight') plt.legend(['denom', '12', '1', '2']) ax = plt.subplot(2, 1, 2) plt.plot(psd12_freq, coherence, 'b-') plt.axis('tight') plt.show() """ # normalize the cross-spectral density and power spectra psd12 /= psd12.max() ps_auto_max = max(ps1_auto.max(), ps2_auto.max()) ps1_auto /= ps_auto_max ps2_auto /= ps_auto_max # make some plots plt.figure() nrows = 2 ncols = 2 # plot the signals ax = plt.subplot(nrows, ncols, 1) plt.plot(t, s1, 'k-', linewidth=2.0) plt.plot(t, s2, 'r-', alpha=0.75, linewidth=2.0) plt.xlabel('Time (s)') plt.ylabel('Signal') plt.axis('tight') # plot the spectra ax = plt.subplot(nrows, ncols, 2) plt.plot(welch_freq1, welch_psd1, 'k-', linewidth=2.0, alpha=0.85) plt.plot(ps1_auto_freq, ps1_auto, 'k--', linewidth=2.0, alpha=0.85) plt.plot(welch_freq2, welch_psd2, 'r-', alpha=0.75, linewidth=2.0) plt.plot(ps2_auto_freq, ps2_auto, 'r--', linewidth=2.0, alpha=0.75) plt.axis('tight') plt.xlabel('Frequency (Hz)') plt.ylabel('Power') # plot the correlation functions ax = plt.subplot(nrows, ncols, 3) plt.axhline(0, c='k') plt.plot(lags, acf1, 'k-', linewidth=2.0) plt.plot(lags, acf2, 'r-', alpha=0.75, linewidth=2.0) plt.plot(lags, cf12, 'g-', alpha=0.75, linewidth=2.0) plt.plot(lags, coh12, 'b-', linewidth=2.0, alpha=0.75) plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'm-', linewidth=1.0, alpha=0.95) plt.xlabel('Lag (ms)') plt.ylabel('Correlation Function') plt.axis('tight') plt.ylim(-0.5, 1.0) handles = custom_legend(['k', 'r', 'g', 'b', 'c'], ['acf1', 'acf2', 'cf12', 'coh12', 'coh12_f']) plt.legend(handles=handles) # plot the cross spectral density ax = plt.subplot(nrows, ncols, 4) handles = custom_legend(['g', 'k', 'b'], ['CSD', 'Coherence', 'Weighted']) plt.axhline(0, c='k') plt.axhline(1, c='k') plt.plot(psd12_freq, psd12, 'g-', linewidth=3.0) plt.errorbar(cfreq, coherence, yerr=np.sqrt(coherence_var), fmt='k-', ecolor='r', linewidth=3.0, elinewidth=5.0, alpha=0.8) plt.plot(cfreq, coherence_weighted, 'b-', linewidth=3.0, alpha=0.75) plt.xlabel('Frequency (Hz)') plt.ylabel('Cross-spectral Density/Coherence') plt.legend(handles=handles) """ plt.figure() plt.axhline(0, c='k') plt.plot(lags, cf12, 'k-', alpha=1, linewidth=2.0) plt.plot(lags, coh12, 'b-', linewidth=3.0, alpha=0.75) plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'r-', linewidth=2.0, alpha=0.95) plt.xlabel('Lag (ms)') plt.ylabel('Correlation Function') plt.axis('tight') plt.ylim(-0.5, 1.0) handles = custom_legend(['k', 'b', 'r'], ['cf12', 'coh12', 'coh12_f']) plt.legend(handles=handles) """ plt.show()